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Abstract: While combinatorial logic circuit design methods are very easy to understand and 

automate, sequential logic circuit design is difficult for those that are new to the field. Textbooks 

focus on translating graphs into logic circuits, but very little is said about how these graphs can 

be easily obtained. We present a method that is intended to help software programmers enter the 

realm of logic circuit design. At the core of the method is a finite automaton based representation 

of the algorithm, which is then turned into a high-level logic circuit diagram that is easily 

translatable to hardware description language (HDL). The paper presents a detailed description 

of the method. It also contains an example as well as a discussion on benefits and drawbacks. 

 

 

1. INTRODUCTION 
 

Digital electronics plays a major role in 

our lives. It is difficult to imagine life without 

smartphones, tablets and notebooks computers. 

But computers are not limited to these 

programmable devices. Tiny special-purpose 

computers can be found everywhere, from cars to 

remote controls and even toys. While general-

purpose computer architectures can be 

programmed to perform specific tasks, another 

approach is to design custom hardware 

architectures for those specific tasks. The main 

benefits of this approach are smaller size and 

higher speed. On the other hand, the main 

drawbacks are the lack of reusability and the 

increased difficulty of hardware design 

compared to software design. This paper 

addresses the latter of these issues by proposing a 

method for easily translating software to 

hardware. The method makes digital circuit 

design [1, 2] available to everyone who has basic 

programming skills. Is is based on a virtual 

programming language (a pseudocode) with only 

three types of instructions, i.e. assignment, if, 

and while. This pseudocode is then translated to 

a deterministic finite automaton [3, 4] where 

every assignment instruction becomes a state, 

and finally the resulting graph is turned into a 

schematic represented in the VHDL hardware 

description language [5, 2]. A step-by-step 

description of the method is presented in Section 

2, and an example is shown in Section 3. Section 

4 discusses the benefits and the drawbacks of the 

proposed method, while the overall conclusions 

of the paper are formulated in Section 5. 

 

 

2. DESCRIPTION OF THE 

METHOD 
 

We start this section with an overview of 

the method and then we present a detailed 

description of each step. 

 

2.1. Overview 

 

A general overview of the method is 

shown in Figure 1. The first step in designing a 

logic circuit is the understanding the functional 
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specifications. They are usually in the form of a 

natural language description of what the circuit 

must do. These specifications must then be 

detailed until they become a series of clear 

commands in a virtual programming language 

that has only the following types of instructions:  

•  assignment 

•  if 

•  while. 

A detailed description of the available 

pseudocode instructions is presented in the 

following subsection. 

The next step of our method is the 

conversion of the algorithm expressed in 

pseudocode to an oriented graph where 

instructions become states and arcs are labeled 

with the condition that allows that transition. 

(Unconditional arcs have no label.) 

Finally, this graph is turned into a logic 

circuit schematic in three steps: 

1) identification of the memory elements 

2) computation of the state transitions 

3) assignments to variables 

These steps are detailed in the following 

subsection. 

 

Initial specifications

(Natural language)

Detailed specifications

(Natural language)

Series of instructions

(Pseudocode)

Flowchart

Graph

Schematic

(HDL)

 
Fig. 1 Overview of the steps of the method. 

 

2.2. Description 

 

1. Pseudocode 

 

We detail next the available pseudocode 

instructions. 

 

Assigment instruction 

 

The general format of this instruction is: 

variable = expression 

The variable is characterized by a name 

and by the number of bits it uses (which is also 

the number of flip-flops it will require in 

hardware). The expression may contain 

constants, variables, and basic arithmetic and 

logic operators that are available as 

combinatorial logic circuits (such as AND, OR, 

NOT, addition and substraction). 

The flowchart equivalent of the 

assignment instruction is shown in Figure 2.a. 

 

If instruction 

 

The general format of this instruction is: 

if (expression) 

{ 

 instructions 1 

} 

else 

{ 

 instructions 2 

} 

If the result obtained after evaluating the 

expression is nonzero, the instruction block 

instructions 1 is executed. Otherwise, the 

instruction block instructions 2 is executed. 

The flowchart equivalent of the if 

instruction is shown in Figure 2.b. 

 

While instruction 

 

The general format of this instruction is: 

while (expression) 

{ 

 instructions 

} 

The instructions inside the curly brackets 

are executed as long as the result of evaluating 

the expression is nonzero. 

The block of instructions may contain any 

valid instruction (including if and while). (The 

same holds true for the instruction blocks of the if 

instruction.) 
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The flowchart equivalent of the while 

instruction is shown in Figure 2.c. 

 

 
Fig. 2 The flowchart representation of: (a) the 

assignment instruction; (b) the if instruction; (c) the 

while instruction. 

 

start

ready

...

 
Fig. 3 The generic start/ready framework for 

algorithms expressed as flowcharts. 

 

2. Graph 

 

In order to obtain the graph for a certain 

algorithm expressed in pseudocode, we must first 

obtain the flowchart representation of the 

algorithm. This step is straighforward, as each 

instruction is replaced by its flowchart equivalent 

from Figure 2. 

The beginning of the algorithm is marked 

by a start state and the end is marked by a ready 

state, as shown in Figure 3.  

Then, every block (except for the 

rhombuses) is labeled with a state name and 

becomes a state in the graph. 

Next, the states are connected by arcs 

according to the arrows in the flowchart. When 

two consecutive states are separated in the 

flowchart by a conditional instruction (a rhombus 

block), the arc that connects them is a 

conditional arc and the condition is determined 

by the condition in the rhombus and by the 

branch that is chosen (so, the condition is either 

(expression is nonzero) or (expression is zero)). 

(When passing through multiple decision blocks 

the resulting condition is composed of the 

conditions of all of those blocks, linked by the 

AND (&&) logical operator.) 

 

3. Schematic 

 

After having obtained the graph, we can 

convert it to a digital circuit schematic in three 

steps that are detailed below. 

The generic schematic is shown in Figure 

4. In order to simplify things, each input of the 

circuit should have a variable that should be 

written only once (at the beginning of the 

algorithm). This variable will, hence, act as a 

buffer for that input (whose eventual subsequent 

oscillations will not matter). (All input variables 

should be read at once in a single composed 

assingment instruction which should be the first 

instruction in the algorithm.) Similarly, a buffer 

variable should be used for each output of the 

circuit. This variable should be written only once 

(at the end of the algorithm) in order to prevent 

the output from oscillating during the execution 

of the algorithm. 

 

New 
value

New 
value

New 
value

Vinput

V1

Voutput

S
New 
state

is_ready

outputs

inputs

ready

start

CLK

…                      ...

 
Fig. 4 The generic schematic of the circuit used for 

implementing a software algorithm. 

 

The three steps for obtaining the schematic 

starting from the graph representation of the 

finite automaton are the following. 

 

Identification of the memory elements 

 

We need need memory elements for each 

of the variables in the algorithm. If a certain 

variable V needs n bits, n D-type flip-flops will 

(a) (b) 

(c) 
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be used for implementing it. Figure 5 shows an 

example for a 3-bit variable. 

We also need an additional variable (let us 

call it S) of  Sn2log  bits, where nS is the 

number of nodes (states) in the graph. 

 

D Q

clk

V_write V_read

D Q

clk

D Q

clk

CLK

 
Fig. 5 A 3-bit variable implemented in hardware as a 

register composed of three D-type flip-flops. 

 

Computation of the state transitions 

 

For an algorithm that contains no 

decisions that are conditioned by variable values, 

the New state block in Figure 4 has only one 

input, which is the current state (i.e., the current 

value of the implicit variable S). Otherwise, the 

current state of some of the variables may be 

needed as input. 

The New state block is a combinatorial 

block, and therefore in order to implement it we 

must first determine its truth table. We fill in this 

table by considering each arc in the graph in turn 

and then putting the destination state in the right-

hand side of the table for the row (or rows, if 

there are multiple arcs pointing to the same 

destination state) where the source state is 

located in the left-hand side of the table. 

For conditional arcs we must locate in the 

left-hand side of the truth table the row (or rows) 

where the source state of the arc is present and 

also the variables have such values that the 

condition on the arc is true (i.e., nonzero). 

Table 1 shows some examples. The 

outputs for all remaining lines in the truth table 

should leave the current state unchanged.  

After having obtained the truth table, 

turning it into a schematic can be done easily, as 

shown in [1, 2]. 

 
Table 1 Construction of the truth table for computing 

the new state: (top) for an unconditional arc; 

(bottom) for a conditional arc. 

Arc Current 

state, S 

Variable 

V 

 New 

state 

... ... ...  ... 

ji ss   si x  sj 

... ... ...  ... 

y

V

x ss   3
 sx 3  sy 

... ... ...  ... 

 

Assignments to variables 

 

In order to obtain the schematics for the 

New value blocks in Figure 4 (i.e., the blocks that 

compute the new values for the variables), we 

take one variable at a time and perform the same 

sequence of steps. For instance, let us take a 

variable V as an example. 

First, we check the graph and the 

algorithm and determine the states where V is 

assigned a value. Let us imagine that V must take 

a certain value vi in state si, another value vj in 

state sj, and another value vk in state sk. (For all 

other states, the value of V must remain 

unchanged.) Hence, the generic schematic for a 

New value block is that shown in Figure 6. 

 

Block inputs 
(state, variables) M

U
X

Select value

Compute 
values Block output 

(new value 
for variable)

 
Fig. 6 The generic schematic of a New value block 

from Figure 4. 

 

Next, we must identify for each of the 

states si, sj and sk the arcs that have that state as 

destination. This will help us obtain the truth 

table for the Select value combinatorial block. 

Each of the identified arcs will become one entry 

(or more entries, if there are additional inputs 

that are not used in the condition of that arc) in 

the table. For each arc, the right-hand side of the 

table will be filled in with the multiplexer input 

number of the value that variable V must take in 

the destination state of the arc, and the left-hand 

side of the table will be filled in with the source 

state of the arc and, if it is the case, the 

combination of input variables values for which 
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the condition of the arc is fulfilled (i.e., it is true, 

or nonzero). Note that this may result into 

multiple rows in the truth table for a single 

conditional arc. 

The same operations must be performed 

for all the other variables. 

 

4. HDL 

 

While by using the method presented so 

far the schematic that corresponds to a certain 

algorithm an be computed by hand and 

represented graphically, is can as well be 

represented directly in a hardware description 

language such as VHDL [2, 5]. 

The main advantage consists in flexibility. 

For instance, variable V from Figure 5 may be 

implemented in VHDL as follows: 

 
entity Variable_V is 
    port ( clk: in std_logic; 
    V_write: in std_logic_vector(2 downto 0); 
    V_read: out std_logic_vector(2 downto 0)); 
end entity; 
 
architecture Arch_V of Variable_V is 
begin 
    process(clk) 
    begin 
        if (clk'event and clk='1') then 
            V_read <= V_write; 
        end if; 
    end process; 
end Arch_V; 

 

This VHDL code template remains the 

same for all the other variables in the algorithm. 

The only thing that changes is the definition of 

the V_write and V_read ports in the entity. 

Instead of 2 we must put the value of n-1, where 

n is the size in bits of the variable. 

Another advantage of representing the 

schematic as HDL code is that by doing this we 

can automate the design of the combinatorial 

blocks (and of the entire schematic as well). For 

instance, the truth table in Table 1 could be 

implemented with the following VHDL code 

sequence: 

 
... 
architecture Arch_NewState of NewState is 
begin 
    process(S_in, V_in) 
    begin 
        if... 
        elsif (S_in == s_i) then 
            S_out <= s_j; 

        elsif ((S_in == s_x) and (V_in == 3)) then 
            S_out <= s_y; 
        ... 
        else 
            S_out <= S_in; 
        end if; 
    end process; 
end Arch_NewState; 

 

A similar and easily customizable VHDL 

code template can be constructed for the New 

value and Select value blocks. All of these 

VHDL files can be created automatically by a 

software program that follows the steps of the 

method described above. 

 

  

3. EXAMPLE 
 

In this section we show an example of the 

method described previously. Let us consider 

that we want to implement a circuit for 

computing the product c of two 8-bit numbers, a 

and b. 

Implementing this circuit in the 

combinatorial way requires dealing with a 2
2x8

-

rows truth table, which is impractical. A 

sequential implementation is, hence, the only 

viable solution. But while for a digital circuit 

designer this would be an easy task, a software 

designer would not know from where to start. 

However, it would be very easy for him to write 

the following pseudocode: 

 
// Pseudocode for (c) = Product(a, b) 
A = a 
B = b 
C = 0 
while (B>0) 
{ 
    C = C+A 
    B = B-1 
} 
// c = C 

 

(Note that we did not consider here an 

efficient algorithm for computing the product of 

two numbers, as our purpose is only to illustrate 

our method for converting software to hardware.) 

Having this pseudocode algorithm, 

converting it to a flowchart representation is 

straightforward and leads to the result in Figure 

7. Note that (as discussed before), the 

instructions A = a and B = b that buffer the input 

data of the algorithm into the variables A and B 
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can be considered (from the point of view of the 

method) to be a single composed instruction. 

 

 
Fig. 7 The flowchart representation of the algorithm 

for computing the product of two numbers. 

 

The next step is to label each 

nondecisional block in the flowchart with a state 

name. We already did that in Figure 7. Hence, 

we have 6 states: s0, s1, s2, s3, s4, and s5.  

Next, we obtain the state transition graph 

of the finite automaton by first drawing 6 labeled 

circles (one for each of the 6 states) and then by 

connecting them with arrows as indicated by the 

flowchart.  

The only possible difficulty here is the B>0 

decision block. In this step of our method, it acts 

as being transparent, but affects the arcs passing 

through it. Any unconditional arc that passes 

through it turns into two conditional arcs – one 

(B>0) conditional arc, and one (!(B>0)) conditional 

arc. (Note that if the entering arc already had a 

condition (cond), the arcs that exit have 

conditions ((cond) and (B>0)) and ((cond) and 

(!(B>0))), respectively.)  

The resulting graph is shown in Figure 8. 

Also note that the arc exiting the start state has 

condition (start == '1') and that from the ready 

state the circuit must move unconditionally to the 

start state at the next positive edge of the clock 

input. 

 

 
Fig. 8 The state transition graph for the finite 

automaton that corresponds to the flowchart in 

Figure 7. 

 

If we now observe Figures 7 and 8, we 

notice that we have three variables (A - 8 bits, B - 

8 bits, and C - 16 bits) and 6 states (and hence, 

the state variable S should be   36log 2   bits 

wide). Therefore, the global schematic of the 

circuit for computing the product c = axb 

according to the algorithm represented in Figure 

7 looks like in Figure 9. 

 

New 
value A

New 
value B

New 
value C

A

B

C

S
New 
state

is_ready

c

a

ready

start

CLK

b

 
Fig. 9 The global schematic of the circuit for 

computing the product of two numbers. 

 

For computing the New state block in 

Figure 9 we use the arcs of the graph in Figure 8, 

as discussed in Section 2.2.3. The resulting table 

is shown in Table 2. Each row is actually another 

form of representing the arcs from Figure 8. 

 
Table 2 The truth table for the New state block in 

Figure 9. 

start 

input 

Current 

state, S 

Variable 

B 

 New state 

1 s0 x  s1 

x s1 x  s2 

x s2 (B > 0)  s3 

x s2 (!(B>0))  s5 

x s3 x  s4 

x s4 (B > 0)  s3 

x s4 (!(B>0))  s5 

x s5 x  s0 

otherwise  same state 

 

s0 

s1 

s2 

s3 

s4 

s5 

(start==’1’) 
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Now let us consider the implementation of 

block New value A from Figure 9. 

Variable A is assigned only one value, a, 

in state s1. In all other cases, it is assigned its 

current value, A, as it must stay unchanged. 

Hence, the multiplexer in block New value A 

should have two inputs: 0 - for a, and 1 - for A. 

Input 0 must be selected in all the cases when the 

automaton is about to enter state s1, and input 1 

in all the other cases. If we check Figure 8, we 

notice that there is only one arc coming to state 

s1, i.e., the conditional (start == '1') arc coming 

from s0. Hence, the truth table for the Select 

value block in block New value A has only two 

rows, as shown in Table 3. 

 
Table 3 The truth table for the multiplexer selection in 

block New value A from Figure 9. 

Current 

state, S 

 Multiplexer 

selection 

s0  0 

other  1 

 

Variable B is assigned two different values 

in the program: value b in state s1, and value B-1 

in state s4. Plus implicit value, B, in all other 

cases. Hence, we need a multiplexer with 3 

inputs (0: b; 1: B-1; 3: B). There is one 

unconditional arc that arrives in state s1 (from 

s0), and one unconditional arc that arrives in 

state s4 (from s3). Hence the circuit for choosing 

the proper selection for the multiplexer in block 

New value B can be implemented in a similar 

manner to that shown above. 

For variable C we have three different 

assignments: 0 - for state s2, C+A - for state s3, 

and C - for all other states. State s2 is reached 

through the unconditional arc coming from s1, 

and state s3 can be reached through two arcs: the 

conditional arc (B>0) coming from s2, and the 

conditional arc (B>0) coming from s4. Hence, the 

truth table for the Select value block in New 

value C is that shown in Table 4. 

 
Table 4 The truth table for the multiplexer selection in 

block New value C from Figure 9. 

Current 

state, S 

Variable 

B 

 Multiplexer 

selection 

s1 x  0 

s2 (B > 0)  1 

s4 (B > 0)  1 

otherwise  2 

 

The VHDL descriptions of all the blocks 

discussed here can be obtained easily, as 

discussed in Section 2.2.4. 

 

  

4. DISCUSSION 
 

The method presented here for converting 

software algorithms to sequential digital logic 

circuits is intended to facilitate digital design for 

people that are familiar with software design. 

The method consists in a series of well-defined 

steps that can be either followed manually in 

order to obtain a schematic, or implemented as a 

software that is able to automatically translate an 

algorithm (written in the pesudocode presented 

in Section 2.2.1) to VHDL. 

Its simplicity make this method a good 

didactic tool that helps with understanding the 

relationship between software and hardware. The 

resulting circuit architecture differs from the 

classic datapath-controlpath architecture, being 

more distributed and data-oriented. 

The main drawback of the method is that it 

generates suboptimal circuits, as our focus was 

on functionality and simplicity, and not on 

optimization.  

Our method starts from software and 

advances to hardware in order to obtain a 

sequential logic circuit that is able to perform the 

functionality described by the algorithm. The 

available algorithms do not take time into 

consideration, the purpose being to compute 

output data from input data (ideally, in zero-

time). That means that our method can 

implement so far only circuits that could be (at 

least theoretically) implemented as combinatorial 

circuits (such as circuits for computing square 

roots, trigonometic functions, binary to binary-

coded-decimal conversions, etc.) For instance, 

the multiplier we implemented as an example in 

Section 3 could be implemented combinatorially 

as well, but it would require a very large number 

of logic gates. Hence, our method is particularly 

suited for sequentializing impractically-large 

combinatorial circuits (or for reducing size at the 

expense of increasing the computation time). 

We must note as well that the period for 

the clock signal must be chosen to be greater 

than the maximum propagation time of all 

combinatorial paths between register outputs and 

register inputs. Transitions from one state to 

another in the graph that corresponds to the 
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algorithm are performed only right after the 

positive edges of the clock signal (which go to 

the clock inputs of all the flip-flops in the 

design). 

The roles of the start input and ready 

output are to command the start of the operation 

and to signal its end, respectively (as shown in 

Figure 10). 

 

Logic circuit

inputs

start

outputs

ready

clock

clock

start

ready
 

Fig. 10 The controlled operation mode for the circuits 

implemented with our method. 

 

Continuous operation circuits could be 

obtained by slight modifications of the method, 

but care should be taken when designing the 

algorithm in order to avoid the oscillation of the 

outputs when the inputs stay unchanged. More 

precisely, the buffer variables for the outputs of 

the circuit should be written to only once during 

the algorithm. 

Although not presented in this paper, 

function calls can be introduced quite easily in 

our method. This would require the introduction 

of the function call as a new instruction 

recognized by the pseudocode and the insertion 

of the graph of the function into the graph of the 

algorithm to be implemented. 

 

5. CONCLUSIONS 
 

We introduced in this paper a method for 

designing digital circuits from a software 

perspective. After writing the algorithm in the 

virtual programming language defined in the 

paper, the presented method can be applied in 

order to automatically obtain a sequential logic 

circuit that performs the same function as the 

algorithm. 

The method is simple and didactic and 

provides a good starting point for designing a 

logic circuit whose desired function is known. 

Further, optimizations can subsequently be 

performed (such as rearranging instructions and 

performing them in parallel, which would lead to 

fewer states in the graph and, thus, fewer 

elementary logic circuits). 
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