
ISSN – 2344 – 2158

A METHOD FOR TRANSLATING PSEUDOCODE TO HDL VIA

FINITE AUTOMATA

Florin-Marian BÎRLEANU
Department of Electronics, Computer Science and Electrical Engineering,

Faculty of Electronics, Telecommunications and Computer Science,

University of Pitesti, Romania

florin.birleanu@upit.ro

Keywords: logic circuit design, finite automata, hardware description language, software

algorithms, VHDL

Abstract: While combinatorial logic circuit design methods are very easy to understand and

automate, sequential logic circuit design is difficult for those that are new to the field. Textbooks

focus on translating graphs into logic circuits, but very little is said about how these graphs can

be easily obtained. We present a method that is intended to help software programmers enter the

realm of logic circuit design. At the core of the method is a finite automaton based representation

of the algorithm, which is then turned into a high-level logic circuit diagram that is easily

translatable to hardware description language (HDL). The paper presents a detailed description

of the method. It also contains an example as well as a discussion on benefits and drawbacks.

1. INTRODUCTION

Digital electronics plays a major role in

our lives. It is difficult to imagine life without

smartphones, tablets and notebooks computers.

But computers are not limited to these

programmable devices. Tiny special-purpose

computers can be found everywhere, from cars to

remote controls and even toys. While general-

purpose computer architectures can be

programmed to perform specific tasks, another

approach is to design custom hardware

architectures for those specific tasks. The main

benefits of this approach are smaller size and

higher speed. On the other hand, the main

drawbacks are the lack of reusability and the

increased difficulty of hardware design

compared to software design. This paper

addresses the latter of these issues by proposing a

method for easily translating software to

hardware. The method makes digital circuit

design [1, 2] available to everyone who has basic

programming skills. Is is based on a virtual

programming language (a pseudocode) with only

three types of instructions, i.e. assignment, if,

and while. This pseudocode is then translated to

a deterministic finite automaton [3, 4] where

every assignment instruction becomes a state,

and finally the resulting graph is turned into a

schematic represented in the VHDL hardware

description language [5, 2]. A step-by-step

description of the method is presented in Section

2, and an example is shown in Section 3. Section

4 discusses the benefits and the drawbacks of the

proposed method, while the overall conclusions

of the paper are formulated in Section 5.

2. DESCRIPTION OF THE

METHOD

We start this section with an overview of

the method and then we present a detailed

description of each step.

2.1. Overview

A general overview of the method is

shown in Figure 1. The first step in designing a

logic circuit is the understanding the functional

12 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN : ELECTRONICS AND COMPUTERS SCIENCE, Vol.1, Issue 14, 2014

ISSN – 2344 – 2158

specifications. They are usually in the form of a

natural language description of what the circuit

must do. These specifications must then be

detailed until they become a series of clear

commands in a virtual programming language

that has only the following types of instructions:

• assignment

• if

• while.

A detailed description of the available

pseudocode instructions is presented in the

following subsection.

The next step of our method is the

conversion of the algorithm expressed in

pseudocode to an oriented graph where

instructions become states and arcs are labeled

with the condition that allows that transition.

(Unconditional arcs have no label.)

Finally, this graph is turned into a logic

circuit schematic in three steps:

1) identification of the memory elements

2) computation of the state transitions

3) assignments to variables

These steps are detailed in the following

subsection.

Initial specifications

(Natural language)

Detailed specifications

(Natural language)

Series of instructions

(Pseudocode)

Flowchart

Graph

Schematic

(HDL)

Fig. 1 Overview of the steps of the method.

2.2. Description

1. Pseudocode

We detail next the available pseudocode

instructions.

Assigment instruction

The general format of this instruction is:

variable = expression

The variable is characterized by a name

and by the number of bits it uses (which is also

the number of flip-flops it will require in

hardware). The expression may contain

constants, variables, and basic arithmetic and

logic operators that are available as

combinatorial logic circuits (such as AND, OR,

NOT, addition and substraction).

The flowchart equivalent of the

assignment instruction is shown in Figure 2.a.

If instruction

The general format of this instruction is:

if (expression)

{

 instructions 1

}

else

{

 instructions 2

}

If the result obtained after evaluating the

expression is nonzero, the instruction block

instructions 1 is executed. Otherwise, the

instruction block instructions 2 is executed.

The flowchart equivalent of the if

instruction is shown in Figure 2.b.

While instruction

The general format of this instruction is:

while (expression)

{

 instructions

}

The instructions inside the curly brackets

are executed as long as the result of evaluating

the expression is nonzero.

The block of instructions may contain any

valid instruction (including if and while). (The

same holds true for the instruction blocks of the if

instruction.)

Florin-Marian BIRLEANU

A METHOD FOR TRANSLATING PSEUDOCODE TO HDL VIA FINITE AUTOMATA 13

ISSN – 2344 – 2158

The flowchart equivalent of the while

instruction is shown in Figure 2.c.

Fig. 2 The flowchart representation of: (a) the

assignment instruction; (b) the if instruction; (c) the

while instruction.

start

ready

...

Fig. 3 The generic start/ready framework for

algorithms expressed as flowcharts.

2. Graph

In order to obtain the graph for a certain

algorithm expressed in pseudocode, we must first

obtain the flowchart representation of the

algorithm. This step is straighforward, as each

instruction is replaced by its flowchart equivalent

from Figure 2.

The beginning of the algorithm is marked

by a start state and the end is marked by a ready

state, as shown in Figure 3.

Then, every block (except for the

rhombuses) is labeled with a state name and

becomes a state in the graph.

Next, the states are connected by arcs

according to the arrows in the flowchart. When

two consecutive states are separated in the

flowchart by a conditional instruction (a rhombus

block), the arc that connects them is a

conditional arc and the condition is determined

by the condition in the rhombus and by the

branch that is chosen (so, the condition is either

(expression is nonzero) or (expression is zero)).

(When passing through multiple decision blocks

the resulting condition is composed of the

conditions of all of those blocks, linked by the

AND (&&) logical operator.)

3. Schematic

After having obtained the graph, we can

convert it to a digital circuit schematic in three

steps that are detailed below.

The generic schematic is shown in Figure

4. In order to simplify things, each input of the

circuit should have a variable that should be

written only once (at the beginning of the

algorithm). This variable will, hence, act as a

buffer for that input (whose eventual subsequent

oscillations will not matter). (All input variables

should be read at once in a single composed

assingment instruction which should be the first

instruction in the algorithm.) Similarly, a buffer

variable should be used for each output of the

circuit. This variable should be written only once

(at the end of the algorithm) in order to prevent

the output from oscillating during the execution

of the algorithm.

New
value

New
value

New
value

Vinput

V1

Voutput

S
New
state

is_ready

outputs

inputs

ready

start

CLK

… ...

Fig. 4 The generic schematic of the circuit used for

implementing a software algorithm.

The three steps for obtaining the schematic

starting from the graph representation of the

finite automaton are the following.

Identification of the memory elements

We need need memory elements for each

of the variables in the algorithm. If a certain

variable V needs n bits, n D-type flip-flops will

(a) (b)

(c)

14 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN : ELECTRONICS AND COMPUTERS SCIENCE, Vol.1, Issue 14, 2014

ISSN – 2344 – 2158

be used for implementing it. Figure 5 shows an

example for a 3-bit variable.

We also need an additional variable (let us

call it S) of  Sn2log bits, where nS is the

number of nodes (states) in the graph.

D Q

clk

V_write V_read

D Q

clk

D Q

clk

CLK

Fig. 5 A 3-bit variable implemented in hardware as a

register composed of three D-type flip-flops.

Computation of the state transitions

For an algorithm that contains no

decisions that are conditioned by variable values,

the New state block in Figure 4 has only one

input, which is the current state (i.e., the current

value of the implicit variable S). Otherwise, the

current state of some of the variables may be

needed as input.

The New state block is a combinatorial

block, and therefore in order to implement it we

must first determine its truth table. We fill in this

table by considering each arc in the graph in turn

and then putting the destination state in the right-

hand side of the table for the row (or rows, if

there are multiple arcs pointing to the same

destination state) where the source state is

located in the left-hand side of the table.

For conditional arcs we must locate in the

left-hand side of the truth table the row (or rows)

where the source state of the arc is present and

also the variables have such values that the

condition on the arc is true (i.e., nonzero).

Table 1 shows some examples. The

outputs for all remaining lines in the truth table

should leave the current state unchanged.

After having obtained the truth table,

turning it into a schematic can be done easily, as

shown in [1, 2].

Table 1 Construction of the truth table for computing

the new state: (top) for an unconditional arc;

(bottom) for a conditional arc.

Arc Current

state, S

Variable

V

 New

state

...

ji ss  si x sj

...

y

V

x ss   3
 sx 3 sy

...

Assignments to variables

In order to obtain the schematics for the

New value blocks in Figure 4 (i.e., the blocks that

compute the new values for the variables), we

take one variable at a time and perform the same

sequence of steps. For instance, let us take a

variable V as an example.

First, we check the graph and the

algorithm and determine the states where V is

assigned a value. Let us imagine that V must take

a certain value vi in state si, another value vj in

state sj, and another value vk in state sk. (For all

other states, the value of V must remain

unchanged.) Hence, the generic schematic for a

New value block is that shown in Figure 6.

Block inputs
(state, variables) M

U
X

Select value

Compute
values Block output

(new value
for variable)

Fig. 6 The generic schematic of a New value block

from Figure 4.

Next, we must identify for each of the

states si, sj and sk the arcs that have that state as

destination. This will help us obtain the truth

table for the Select value combinatorial block.

Each of the identified arcs will become one entry

(or more entries, if there are additional inputs

that are not used in the condition of that arc) in

the table. For each arc, the right-hand side of the

table will be filled in with the multiplexer input

number of the value that variable V must take in

the destination state of the arc, and the left-hand

side of the table will be filled in with the source

state of the arc and, if it is the case, the

combination of input variables values for which

Florin-Marian BIRLEANU

A METHOD FOR TRANSLATING PSEUDOCODE TO HDL VIA FINITE AUTOMATA 15

ISSN – 2344 – 2158

the condition of the arc is fulfilled (i.e., it is true,

or nonzero). Note that this may result into

multiple rows in the truth table for a single

conditional arc.

The same operations must be performed

for all the other variables.

4. HDL

While by using the method presented so

far the schematic that corresponds to a certain

algorithm an be computed by hand and

represented graphically, is can as well be

represented directly in a hardware description

language such as VHDL [2, 5].

The main advantage consists in flexibility.

For instance, variable V from Figure 5 may be

implemented in VHDL as follows:

entity Variable_V is
 port (clk: in std_logic;
 V_write: in std_logic_vector(2 downto 0);
 V_read: out std_logic_vector(2 downto 0));
end entity;

architecture Arch_V of Variable_V is
begin
 process(clk)
 begin
 if (clk'event and clk='1') then
 V_read <= V_write;
 end if;
 end process;
end Arch_V;

This VHDL code template remains the

same for all the other variables in the algorithm.

The only thing that changes is the definition of

the V_write and V_read ports in the entity.

Instead of 2 we must put the value of n-1, where

n is the size in bits of the variable.

Another advantage of representing the

schematic as HDL code is that by doing this we

can automate the design of the combinatorial

blocks (and of the entire schematic as well). For

instance, the truth table in Table 1 could be

implemented with the following VHDL code

sequence:

...
architecture Arch_NewState of NewState is
begin
 process(S_in, V_in)
 begin
 if...
 elsif (S_in == s_i) then
 S_out <= s_j;

 elsif ((S_in == s_x) and (V_in == 3)) then
 S_out <= s_y;
 ...
 else
 S_out <= S_in;
 end if;
 end process;
end Arch_NewState;

A similar and easily customizable VHDL

code template can be constructed for the New

value and Select value blocks. All of these

VHDL files can be created automatically by a

software program that follows the steps of the

method described above.

3. EXAMPLE

In this section we show an example of the

method described previously. Let us consider

that we want to implement a circuit for

computing the product c of two 8-bit numbers, a

and b.

Implementing this circuit in the

combinatorial way requires dealing with a 2
2x8

-

rows truth table, which is impractical. A

sequential implementation is, hence, the only

viable solution. But while for a digital circuit

designer this would be an easy task, a software

designer would not know from where to start.

However, it would be very easy for him to write

the following pseudocode:

// Pseudocode for (c) = Product(a, b)
A = a
B = b
C = 0
while (B>0)
{
 C = C+A
 B = B-1
}
// c = C

(Note that we did not consider here an

efficient algorithm for computing the product of

two numbers, as our purpose is only to illustrate

our method for converting software to hardware.)

Having this pseudocode algorithm,

converting it to a flowchart representation is

straightforward and leads to the result in Figure

7. Note that (as discussed before), the

instructions A = a and B = b that buffer the input

data of the algorithm into the variables A and B

16 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN : ELECTRONICS AND COMPUTERS SCIENCE, Vol.1, Issue 14, 2014

ISSN – 2344 – 2158

can be considered (from the point of view of the

method) to be a single composed instruction.

Fig. 7 The flowchart representation of the algorithm

for computing the product of two numbers.

The next step is to label each

nondecisional block in the flowchart with a state

name. We already did that in Figure 7. Hence,

we have 6 states: s0, s1, s2, s3, s4, and s5.

Next, we obtain the state transition graph

of the finite automaton by first drawing 6 labeled

circles (one for each of the 6 states) and then by

connecting them with arrows as indicated by the

flowchart.

The only possible difficulty here is the B>0

decision block. In this step of our method, it acts

as being transparent, but affects the arcs passing

through it. Any unconditional arc that passes

through it turns into two conditional arcs – one

(B>0) conditional arc, and one (!(B>0)) conditional

arc. (Note that if the entering arc already had a

condition (cond), the arcs that exit have

conditions ((cond) and (B>0)) and ((cond) and

(!(B>0))), respectively.)

The resulting graph is shown in Figure 8.

Also note that the arc exiting the start state has

condition (start == '1') and that from the ready

state the circuit must move unconditionally to the

start state at the next positive edge of the clock

input.

Fig. 8 The state transition graph for the finite

automaton that corresponds to the flowchart in

Figure 7.

If we now observe Figures 7 and 8, we

notice that we have three variables (A - 8 bits, B -

8 bits, and C - 16 bits) and 6 states (and hence,

the state variable S should be   36log 2  bits

wide). Therefore, the global schematic of the

circuit for computing the product c = axb

according to the algorithm represented in Figure

7 looks like in Figure 9.

New
value A

New
value B

New
value C

A

B

C

S
New
state

is_ready

c

a

ready

start

CLK

b

Fig. 9 The global schematic of the circuit for

computing the product of two numbers.

For computing the New state block in

Figure 9 we use the arcs of the graph in Figure 8,

as discussed in Section 2.2.3. The resulting table

is shown in Table 2. Each row is actually another

form of representing the arcs from Figure 8.

Table 2 The truth table for the New state block in

Figure 9.

start

input

Current

state, S

Variable

B

 New state

1 s0 x s1

x s1 x s2

x s2 (B > 0) s3

x s2 (!(B>0)) s5

x s3 x s4

x s4 (B > 0) s3

x s4 (!(B>0)) s5

x s5 x s0

otherwise same state

s0

s1

s2

s3

s4

s5

(start==’1’)

Florin-Marian BIRLEANU

A METHOD FOR TRANSLATING PSEUDOCODE TO HDL VIA FINITE AUTOMATA 17

ISSN – 2344 – 2158

Now let us consider the implementation of

block New value A from Figure 9.

Variable A is assigned only one value, a,

in state s1. In all other cases, it is assigned its

current value, A, as it must stay unchanged.

Hence, the multiplexer in block New value A

should have two inputs: 0 - for a, and 1 - for A.

Input 0 must be selected in all the cases when the

automaton is about to enter state s1, and input 1

in all the other cases. If we check Figure 8, we

notice that there is only one arc coming to state

s1, i.e., the conditional (start == '1') arc coming

from s0. Hence, the truth table for the Select

value block in block New value A has only two

rows, as shown in Table 3.

Table 3 The truth table for the multiplexer selection in

block New value A from Figure 9.

Current

state, S

 Multiplexer

selection

s0 0

other 1

Variable B is assigned two different values

in the program: value b in state s1, and value B-1

in state s4. Plus implicit value, B, in all other

cases. Hence, we need a multiplexer with 3

inputs (0: b; 1: B-1; 3: B). There is one

unconditional arc that arrives in state s1 (from

s0), and one unconditional arc that arrives in

state s4 (from s3). Hence the circuit for choosing

the proper selection for the multiplexer in block

New value B can be implemented in a similar

manner to that shown above.

For variable C we have three different

assignments: 0 - for state s2, C+A - for state s3,

and C - for all other states. State s2 is reached

through the unconditional arc coming from s1,

and state s3 can be reached through two arcs: the

conditional arc (B>0) coming from s2, and the

conditional arc (B>0) coming from s4. Hence, the

truth table for the Select value block in New

value C is that shown in Table 4.

Table 4 The truth table for the multiplexer selection in

block New value C from Figure 9.

Current

state, S

Variable

B

 Multiplexer

selection

s1 x 0

s2 (B > 0) 1

s4 (B > 0) 1

otherwise 2

The VHDL descriptions of all the blocks

discussed here can be obtained easily, as

discussed in Section 2.2.4.

4. DISCUSSION

The method presented here for converting

software algorithms to sequential digital logic

circuits is intended to facilitate digital design for

people that are familiar with software design.

The method consists in a series of well-defined

steps that can be either followed manually in

order to obtain a schematic, or implemented as a

software that is able to automatically translate an

algorithm (written in the pesudocode presented

in Section 2.2.1) to VHDL.

Its simplicity make this method a good

didactic tool that helps with understanding the

relationship between software and hardware. The

resulting circuit architecture differs from the

classic datapath-controlpath architecture, being

more distributed and data-oriented.

The main drawback of the method is that it

generates suboptimal circuits, as our focus was

on functionality and simplicity, and not on

optimization.

Our method starts from software and

advances to hardware in order to obtain a

sequential logic circuit that is able to perform the

functionality described by the algorithm. The

available algorithms do not take time into

consideration, the purpose being to compute

output data from input data (ideally, in zero-

time). That means that our method can

implement so far only circuits that could be (at

least theoretically) implemented as combinatorial

circuits (such as circuits for computing square

roots, trigonometic functions, binary to binary-

coded-decimal conversions, etc.) For instance,

the multiplier we implemented as an example in

Section 3 could be implemented combinatorially

as well, but it would require a very large number

of logic gates. Hence, our method is particularly

suited for sequentializing impractically-large

combinatorial circuits (or for reducing size at the

expense of increasing the computation time).

We must note as well that the period for

the clock signal must be chosen to be greater

than the maximum propagation time of all

combinatorial paths between register outputs and

register inputs. Transitions from one state to

another in the graph that corresponds to the

18 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN : ELECTRONICS AND COMPUTERS SCIENCE, Vol.1, Issue 14, 2014

ISSN – 2344 – 2158

algorithm are performed only right after the

positive edges of the clock signal (which go to

the clock inputs of all the flip-flops in the

design).

The roles of the start input and ready

output are to command the start of the operation

and to signal its end, respectively (as shown in

Figure 10).

Logic circuit

inputs

start

outputs

ready

clock

clock

start

ready

Fig. 10 The controlled operation mode for the circuits

implemented with our method.

Continuous operation circuits could be

obtained by slight modifications of the method,

but care should be taken when designing the

algorithm in order to avoid the oscillation of the

outputs when the inputs stay unchanged. More

precisely, the buffer variables for the outputs of

the circuit should be written to only once during

the algorithm.

Although not presented in this paper,

function calls can be introduced quite easily in

our method. This would require the introduction

of the function call as a new instruction

recognized by the pseudocode and the insertion

of the graph of the function into the graph of the

algorithm to be implemented.

5. CONCLUSIONS

We introduced in this paper a method for

designing digital circuits from a software

perspective. After writing the algorithm in the

virtual programming language defined in the

paper, the presented method can be applied in

order to automatically obtain a sequential logic

circuit that performs the same function as the

algorithm.

The method is simple and didactic and

provides a good starting point for designing a

logic circuit whose desired function is known.

Further, optimizations can subsequently be

performed (such as rearranging instructions and

performing them in parallel, which would lead to

fewer states in the graph and, thus, fewer

elementary logic circuits).

6. REFERENCES

[1]. Katz, Randy H., Borriello, Gaetano,

“Contemporary Logic Design”, 2nd ed.,

Prentice Hall, 2004.

[2]. Hwang, Enoch O., “Digital Logic and

Microprocessor Design with VHDL”, Cengage

Learning, 2005.

[3]. Hopcroft, John E., Motwani, Rajeev, Ullman,

Jeffrey D., “Introduction to Automata Theory,

Languages, and Computation”, 2nd ed.,

Addison-Wesley, 2001.

[4]. Aho, Alfred V., Lam, Monica S., Sethi, Ravi,

Ullman, Jeffrey D., “Compilers. Principles,

Techniques, & Tools”, 2nd ed., Addison-

Wesley, 2007.

[5]. Chu, Pong P., “FPGA Prototyping by VHDL

Examples. Xilinx Spartan-3 Version”, John

Wiley & Sons, 2008.

