
ISSN – 1453 – 1119

SYSTEM FOR MONITORING A FLEET OF ANDROID DEVICES

USING TWO WAY MESSAGE QUEUING

Valeriu Manuel IONESCU
University of Pitesti, ROMANIA

valeriu.ionescu@upit.ro

Keywords: Android, monitoring, Message Queuing

Abstract: This paper describes the design and implementation of a system that is able to monitor a

fleet of vehicles. Rabbit MQ is used to send data between devices and the server. Tests are made

to determine the problems of such implementation and recommendations are made to solve

similar implementations.

1. INTRODUCTION

Internet of things (IoT) is one of the most

used keywords in technology at this moment.

This summarizes the large number of devices

that are connected to the internet in order to

inform a server about the events that have occur,

such as position, changes in pressure,

temperature or simply information about a

device's status. The trend is to make all devices

"smart" and connected to the internet[1].

Monitoring large number of devices (a

fleet), such as vehicles, is often necessary

because of people want to know where their

location, history and how to organize them better

in the future. Keeping track of such a large

number of devices can prove to be a difficult

task, because the server or servers that receive

the data from the devices must meet one or more

of the following criteria (this is not a restrictive

list): must have sufficient bandwidth; must have

redundancy; are power efficient; are cost

efficient; are available 24/7. One of the solution

that easily meets the outlined criteria is to use

servers that are installed in virtualized operating

systems. They provide a cost effective method to

implement a server that can monitor many

devices, that can easily grow if the number the

devices increases.

For the monitored device implementation,

as the price, size and power consumption of

Android devices has continued to fall while the

performance has increased, they are ideal

candidates for smart device implementations[2].

This paper presents the design considerations

and the implementation problems for a system

monitoring a large number of devices, based on

Message Queuing technique. The system is

designed to lose as little data as possible while

keeping communication costs down.

2. THE DESIGN OF THE

COMMUNICATION ARCHITECTURE

A simple way to design a server that has IoT

devices connected is a standard server-client

architecture. Fig. 1 a. In order to reduce the

communication costs, UDP can be used to transfer

data to the server. The advantage is a reduced

communication overhead and the disadvantage is

that there is no connection and lost datagrams mush

be handled at the application level.

In the following examples, the following

keywords will be used: The Server is a windows

service that handles two-way communication to

the IoT devices. It communicates UDP

datagrams to a VPN interface that is connected to

the cellular network. The Relay is a service that

receives the UDP datagrams, stores them and

sends them when they are requested. The relay

uses a message queuing server. Rabbit MQ was

used for the tests. The Device is the IoT device

powered by Android that needs to send data to

the server and receive information (such as

commands or interrogations) from the Server.

18 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN : ELECTRONICS AND COMPUTERS SCIENCE, Vol.14, Issue 2, 2014

Fig. 1 Evolving the design form a simple server-client architecture (a) to a server side Message Queuing system

(b) and finally double Message Queuing system that handles well server and client availability (c).

There are a few problems with this design:

a. If the server crashes or goes down for

maintenance, the incoming UDP datagrams will

be lost because UDP is unreliable.

b. If the server handles communication and

processing, there is no good scalability.

In order to fix this, we can add a “relay”

service between them. This can use a Message

Queuing server such as Rabbit MQ or Active

MQ. This can be seen in Fig. 1. b. In the

resulting architecture we have:

a. The Relay that handles the low-level

communication: sending and receiving UDP

datagrams.

b. The Queue that handles persistence,

reliability, in-order processing, etc.

c. The Server that handles high-level

communication (parses packets, etc).

In this architecture one server service is

present. Usually changes to services are tested on

a different server then the one being used in

production. In this case the development and

production servers run on different physical or

virtual machines and need an architecture that

handles reliability on both sides: for messages

originating from the server and for messages

originating from the client.

This setup is also good for scalability if for

example, the data needs to be processed before it

is stored (such as image processing for form

recognition if the devices send images) and more

servers are necessary to handle the data. In this

third architecture (Fig. 1. c.):

a. Each server has an input queue, for relay-to-

server UDP datagrams. This is easier than

having multiple readers on the same queue.

b. The relay has an input queue, for server-to-

relay UDP datagrams.

For this architecture, the flow of a UDP

datagram is the following:

i. The relay listens for incoming UDP

datagrams (on all interfaces, on a

specific port).

ii. The relay performs a basic check on the

packet to confirm that it’s the correct

packet and it is destined for this server.

Relay

IoT device

 IoT device

 IoT device

Network
Server

Queue

Server
Queue

Queue

c

Virtualization
system

Relay

IoT device

IoT device

 IoT device

Network Server Queue

b

Server

IoT device

IoT device

IoT device

Network

a

Valeriu Manuel IONESCU

SYSTEM FOR MONITORING A VEHICLE FLEET BASED ON MESSAGE QUEUING BETWEEN VIRTUAL OPERATING

SYSTEMS ..19

iii. The relay envelopes the datagram with

extra information (timestamp plus

IP/port of the device who sent the

message) and then inserts it into the

queue for the right server.

iv. The server receives a message in its

queue.

v. The server processes the message and

performs whatever actions are necessary.

vi. After the message has been processed

reliably, it is removed from the queue.

vii. If the server needs to respond to a

device, it inserts a message into the

relay’s queue.

viii. The relay receives a message in its

queue.

ix. The relay parses the message’s

destination and payload, and sends it to

the right device.

3. IMPLEMENTATION AND

RESULTS

The implementation uses Microsoft Hyper-V

Server 2012 Free for implementing the

virtualization system, and Windows 8 was used

as the OS for the Virtual Machines, running IIS

as the server. The data received was written to a

SQL server. The server was a quad core, 8-

thread, i7, 2670MQ device with 8GB of RAM.

The devices were 25 Android devices

running Android 4.2, with dual core processors.

The proposed architecture is based on cellular

communication as wireless communication was a

lower coverage area. Multiple GSM networks in

Romania were used in the testing process. The

connection speed varied from HSDPA to UMTS.

C# was used to write the code server side

and Java for the Android devices.

The message queuing server was RabbitMQ.

Java 1.7 was used for the implementation.

In order to secure the data, OpenVPN is used

as a VPN client that carries the traffic between

the server and the cellular network.

Cellular-based communication used UDP

(because it is cost-effective). Messages were

binary encoded to reduce the size of the

messages.

The purpose of the implementation was for

the server to receive all time stamped location

information from the devices and be able to send

commands to the devices. If the device has

connectivity to the server, the device sends the

data. If there is no connectivity, the device stores

the data locally in order to send it later. The

server is also able to send commands to the

device. If the device is not in range, the

commands are stored in the message queue on

the server and sent to the device when it registers

to the server.

In order to help the testing, a keep alive

mechanism was implemented where a device

sends a message to the server even if it has no

data to send every 15 minutes. This allows the

server to know where the device lost

connectivity. A monitoring application was also

designed to draw a map with the devices location

and to be able to send commands to the devices

(Fig. 2).

A first problem of the implementation was

caused the unreliable nature of the UDP protocol.

Many messages arrived as duplicates because the

device determined that, after sending a part of

the data that the connection was unreliable and it

needed to re-send the data at a later time. Some

of the data however arrived at the server. When

the device re-sent the data, duplicates occurred.

The solution was to check the message pool for

duplicates. If the message id was already

received, it was marked and logged as a

duplicate and was discarded.

A different test was made server side to

simulate a server down event, where the server

was stopped when devices were sending data.

The devices determined correctly that the server

did not respond but when the server came back

up, a different problem was present.

As the solution for implementing the DB

operations was using Microsoft Entity

Framework, all database operations were

processed and committed one by one (in order to

avoid problems with reading incorrect data from

the UDP package). If a large number of packets

was received in a short period of time, the DB

did not have time to properly close all the

connections, the connection pool ran out of

connections leading to the reject of all new DB

connections. A fast solution was to run an SQL

agent that tests the number of connections, and

terminate them is the number exceeded a certain

limit. SQL Server 2014 that was used allows a

maximum of 32767 connections by default and

has about 5-10 connections on average[3].

20 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN : ELECTRONICS AND COMPUTERS SCIENCE, Vol.14, Issue 2, 2014

Fig. 2 The Android application allows monitoring the

data sent by the other devices using Google Maps.

The SQL script used the following was used

to DB terminate the connections (the DB name is

'TestDb'):
begin

SELECT @connectionNo= COUNT(*) FROM
master.dbo.syslockinfo WHERE DB_NAME(rsc_dbid) = 'TestDb'

end print @connectionNo

if @connectionNo > 4000

select @query=coalesce(@query,',')+'kill '+convert(varchar,

spid)+ '; '
from master..sysprocesses where dbid=db_id(@databasename)

if @connectionNo < 4000
begin print 'connection limit ok' end

else if len(@query) > 0

begin
print @query

 exec(@query)

end

This solution was not acceptable as positions

were lost when the connections were terminated.

The final solution was to use the Unit of Work

pattern that combines a set of interactions and

commit them at once using a transaction[4].

One other problem of the implementation

was the fake GSM connectivity. This happens

when a device has GSM connectivity but the

signal is so low that it is unable to send the data

correctly. The solution was to poll the

connectivity every minute, with a

message/confirmation. If the test message gets

the confirmation the connectivity is confirm and

the transmission can start correctly.

4. CONCLUSIONS

In this paper an architecture was presented

for monitoring a fleet of Android devices that

communicate using and unreliable protocol UDP

for data transfers. And an implementation was

made that showed several practical problems.

The implementation problems occurred usually

when a large number of devices tried to write a

large amount of data to the server, and solutions

were found to prevent the server from exhausting

the connection pool.

After solving the problem the system

monitored 25 Android devices with minimal data

loss and connection overhead.

The fact that the problems took place then

the single point of failure was turned off (Rabbit

MQ on the server) showed that its use for a

solution with more might prove limited and

further redundancy measures should be

investigated.

5. REFERENCES
[1]. Friedemann Mattern, Christian Floerkemeier

"From the Internet of Computers to the Internet

of Things", Accessed 12.11.2014, Available at:

https://technet.microsoft.com/en-

us/library/ms187030.aspx

[2] Cognizant reports, "Reaping the Benefits of the

Internet of Things", May 2014, Accessed

12.11.2014, Available at:

http://www.cognizant.com/InsightsWhitepapers/Reapi

ng-the-Benefits-of-the-Internet-of-Things.pdf

[3]Microsoft, "Configure the user connections Server

Configuration Option", Accessed 12.11.2014,

Available at: https://technet.microsoft.com/en-

us/library/ms187030.aspx

[4] Tom Dykstra, Implementing the Repository and

Unit of Work Patterns in an ASP.NET MVC

Application, July 30, 2013, ", Accessed

12.11.2014, Available at:

http://www.asp.net/mvc/overview/older-

versions/getting-started-with-ef-5-using-mvc-

4/implementing-the-repository-and-unit-of-work-

patterns-in-an-asp-net-mvc-application

