

AN IMPLEMENTATION OF THE GREEDY ALGORITHM FOR

MULTICORE SYSTEMS

Doru Anastasiu POPESCU
University of Pitești, Romania

Faculty of Mathematics and Computer Sciences

dopopan@gmail.com

Keywords: Parallel programming, algorithm, programming techniques, Java

Abstract: The great variety of parallel systems that appeared in the last period and use multicore

chips leads inevitably to the development of applications with parallel algorithms. A multicore

algorithm uses several threads in the process of searching information. In this paper we will

present a general multicore algorithm for Greedy method and an implementation in Java

programming language of an algorithm that uses this method.

1. INTRODUCTION

The multi-core processors are characterized by the

fact that they split their problems in problems solved

by simpler cores. This leads to the increase of the

number of the problems that can be solved and

occasionally to the reduction of solving time of these.

Technical aspects regarding the functioning of the

systems using multicore processors are presented in

[1], [5] and [6].

Computers from the last generation are equipped with

multicore processors, so they impose the usage of

parallel algorithms for solving problems, in order to

benefit from their advantages. Versions of parallel

algorithms were written for various programming

methods in order to make specific implementations.

In papers [2], [3] and [4] various types of parallel

algorithms for backtracking methods are presented

and their implementation is made with threads from

Java language.

In the next sections we will present the general form

of Greedy method by using a parallel version and an

example of its usage. The implementation of the

parallel algorithm will be made using threads in Java

programming language.

An important notion used in parallel

algorithms is thread which can be defined as an

execution entity inside a process (details in [8]),

formed from a context and a sequence of execution

instructions.

These have some important characteristics:

- Threads are used to create programs formed

from concurrent processing units.

- The entity thread executes a sequence time

by encapsulated instructions in function of

thread.

- The execution of a thread could be

interrupted for permitting the processor to

give control to a thread.

- Threads are treated independent by the

process itself or by the operating system

nucleus. The component system (process or

nucleus) which manages the threads depends

on their implementing method.

2. GREEDY METHOD WITH PARALLEL

ALGORITHMS

Using Greedy method problems with a set of data

denoted by A as input data, a condition and a subset

B of set A that verifies the given condition is required

can be solved. Generally, the condition from the

statement is an optimal one and therefore it should be

mathematically demonstrated that Greedy method

leads to a correct solution.

Greedy method provides a single solution that

verifies the condition from the statement, unlike

backtracking method, which determines all the

solutions. This would be a disadvantage of Greedy

method, but a major advantage is that the execution

time is polynomial related to the dimension of set A,

unlike backtracking method where time is

exponential.

Greedy method is used in many areas of Informatics

such as Graph Theory, Image and Signal Processing,

Bioinformatics etc. Kruskal’s algorithm, Prim’s

algorithm for determining the minimum spanning

tree, the continuous version of knapsack algorithm

are some greatly important algorithms that use

Greedy method.

The general form of the parallel algorithm for Greedy

method is presented in the next rows.

Step 1. The elements of set A are read or determined

by various methods.

Step 2. The number of elements n of set B is read.

Step 3. B ← ø; k ← 0

Step 4. The elements from set A are rearranged,

eventually using information derived from the

condition that set B must verify.

Step 5. while A≠ø and k < n do

 a from A that verifies a propriety

 obtained from the problem conditions using

 a secondary thread is determined

 if a exists then

 k ← k + 1

 B ← B U {a}

 A ← A \ {a}

 end if

 end while

Step 6. The elements from B are written.

Observations

1. The algorithm is working properly when the

problem has solution. The condition from while

instruction should be completed to signalize the non-

existence of a solution for some input data and to

avoid a cyclic redundancy in step 5.

2. Every step of while instruction from step 5

should be executed with a single thread to obtain an

efficient algorithm regarding execution time. If the

algorithm is used in this way, the algorithm

concurrence must be taken into account, i.e. the

situations when the same values for a from set A are

obtained for two or more threads. This aspects are

particular with the problems.

3. The correctness of the algorithm must be

demonstrated mathematically or by another means.

3. CASE STUDY

We suggest to solve a problem using the algorithm

described in section 1.

Statement

A natural number n with maximum 7 digits is given.

Determine the first n natural numbers which can be

written as a sum of two primes (e.g. 4=2+2, 5=3+2,

6=3+3).

Solution

The Java program that uses threads write every

element of set B as it is determined. The set A is

formed from the primes lower or equal with a high

enough value so that every number from set B could

be written as a sum of two primes.

We will present next the source code that uses multi-

core Greedy method.

import java.io.*;

class Fir extends Thread

{

public static long numar, sw, a, b;

public Fir(long numar) {this.numar =

numar;}

public long prim(long k){

//check if k is prime

long i;

if (k<2)

 return 0;

for(i=2;i<=Math.sqrt(k);i++)

 if(k%i==0)

 return 0;

return 1;

}

public void run()

{

//write the source code thread

long i;

for(i=2; i <= numar; i++)

 if(prim(i)==1 && prim(numar-i)==1){

 sw=1;a=i;b=numar-i;

 break;

 }

}

public static void main(String[] args)

{

long n, k;

System.out.print("n=");

n=Long.parseLong(cin.linie());

k=0;numar=4;

while(k<=n){

 sw=0;

 new Fir(numar).start();

 // we launch a thread execution

 if(sw==1){

 System.out.println(numar+"="+a+"+"+b);

 k++;

 }

 numar++;

}

}

}

The cin class presented below was used to ease the

way of data reading.

import java.io.*;

public class cin

{

 static String linie()

 {

 String sir="";

 char ch;

 try

 {

 while(

(ch=(char)System.in.read())!=13)

 sir=sir+ch;

 }

 catch(IOException e){}

 try{

System.in.read(); }

 catch(IOException e){}

 return sir;

 }

}

The results obtained with this program are presented

in figure 1.

Fig. 1 The results for n=15

A more complex problem would be the determination

of the first n natural numbers that can be written as a

sum of p distinct primes, being given a natural

number lower or equal with 10.

In this case a solution would propose using

backtracking method in the form from [2], [3] or [4]

to obtain an algorithm with a better execution time.

4. ADVATAGES AND DISADVANTAGES

OF PARALLEL ALGORITHMS

The usage of parallel algorithms in solving some

problems can be a good or bad solution because the

performance of these algorithms depends on various

factors, from which we remind:

- the unbalance of processors (the

impossibility of distribution in perfect

equally tasks and the variation of parallelism

point inside the algorithm);

- the additional calculus which appear in case

the fastest sequential algorithm cannot be

paralleled and a slow parallel algorithm

which can be paralleled is chosen;

- the communication between processes;

- the concurrence for the shared data set.

One of the most important characteristics of a parallel

algorithm is the partition of the problem in sub-

problems which can be solved on several threads.

For the projection of a parallel algorithm a series of

approaches can be considered. The first one would be

the parallelization of an existent sequential algorithm.

For this the parallelism which appears naturally inside

a sequential algorithm must be determined.

Sometimes, finding a different solution from the one

offered by the sequential algorithm is preferred and

this supposes re-thinking the entire algorithm.

Indifferently of the approach manner inside a parallel

algorithm, a series of important considerations cannot

be ignored. One of these is the communication cost

between the processes, [9].

If the cost or complexity of a sequential algorithm is

expressed in space (the volume of the occupied

memory) and time (the number of operations made)

necessary for executing a program, at the parallel one

the way of communication between the processes

must be considered.

Related with the algorithm presented in section 3,

advantages to the sequential variant do not exist either

from the memory point of view. For the values used at

testing the execution times for the two variants were

close. But a simple modification of the parallel

algorithm from the section 3 regarding the increment

of k in run function and not in main led to obtaining

less good times in the parallel variant than in the

sequential one.

5. CONCLUSIONS

The paper proposed a model of using Greedy method

with threads in Java programming language, in order

to emphasize a category of applications specific to

multi-core systems.

In papers [5] and [6] there are presented multiple

aspects specific to multi-core systems that should be

taken into account when systems with parallel

algorithms are projected.

In order to have at hand general mechanisms of

solving problems by parallel programming, general

methods of solving problems are useful to be known,

such as backtracking, greedy, divide et impera,

dynamic programming in multicore versions.

6. REFERENCES

[1]. Chu M., Ravindran R., Mahlke S., Data

Access Partitioning for Fine-grain Parallelism on

Multicore Architectures, Proceedings of the 40th

Annual IEEE/ACM International Symposium on

Microarchitecture, 2007, 369-380.

[2]. Hamadi Y., Bessire C., Quinqueton J.,

Backtracking in distributed constraint networks, in

Proceedings ECAI98, Brighton, UK, 1998, 219-223.

[3]. Giurgiu C.-F., An implementation of the

backtracking algorithm for distributed systems,

Analele Universitatii de Vest din Timisoara, Seria

Matematica-Informatica, Vol- ume XLVI, Issue 1,

2008, 61-74.

[4]. Giurgiu C.-F., An implementation of the

backtracking algorithm for multicore systems,

ROMJIST, Volume 13, Number 3, 2010, 241–254

[5]. Pankratius V., Schaefer C., Jannesari A.,

Tichy W.F., Software engineering for multicore

systems: an experience report, Proceedings of the 1st

international workshop on Multicore software

engineering, Leipzig, Germany, 2008, 53-60.

[6]. Zivan R., Meisels A., Synchronous and

Asynchronous Search on DisCSPs, in Proceedings of

the First European Workshop on Multi-Agent

Systems (EUMA), Oxford, UK, 2003.

[7]. http://ro.wikipedia.org/wiki/Algoritmi_de_calcul_

paralel

[8]. Allen I. Holub, Taming Java Programming

Language Threads, JavaOne, 2001

[9]. Herbert Schildt, Java: The Complete Reference,

Seventh Edition, 2007 by The McGraw-Hill

Companies.

