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Abstract: Determining the state of charge (SoC) of a battery is a crucial factor for its proper 

functioning. Due to its strongly non-linear character, this is a real challenge for LiFePO4 (LFP) 

batteries. In this paper we present a technique for estimating the SoC, which is based on a third 

order RC network model and an adaptive observer. The observer gets, as input values, the voltage 

at the terminals of the battery and the discharge current, and provides the SoC of the battery as an 

output. Testing the performance of the adaptive observer is done by direct comparison of data 

from its output with the data obtained experimentally by discharging an LFP battery in keeping 

with the Urban Dynamometer Driving Schedule (UDDS) discharge cycle. 

 

 

1. INTRODUCTION 
 

In the context of the global crisis related to 

the depletion of oil resources and the acute 

environmental issues, electric vehicles (EV) 

acquire an increasingly greater popularity [1]. 

They currently use Li-Ion batteries as the sole 

source of energy for both electric traction and the 

rest of the consumers. These batteries combine 

high current density, which ensures the discharge 

current needed, with high energy density, which 

provides the autonomy of the car. However, a 

number of operational safety issues, as well as 

their rather high cost, have triggered a search for 

still other energy storage solutions [2]. Among 

them, the LFP batteries promise to solve these 

problems. LFP batteries are part of the category 

of Li-Ion batteries, and they use a graphite anode 

and a cathode made of Li ferrophosphate. The 

olivine structure of the cathode gives these 

batteries a high structural and thermodynamic 

stability, making them the safest Li-based 

batteries [3]. Besides the advantages of safety 

and the fact that their structure does not contain 

rare metals (Ni, Co, Mn, etc.), LFP batteries also 

present a set of negative aspects as compared to 

the rest of Li-Ion batteries. The most important 

of them are the low energy density, the low 

electrical potential (3.2 - 3.3V compared to 3.6 - 

3.7 V that is typical for Li-Ion batteries), the 

strongly non-linear character of the link between 

SoC and Open Circuit Voltage (OCV) [4], 

respectively internal resistance.  

For the electric vehicles, the operation of 

batteries within the limits of safety is ensured by 

their management block (BMS). The role of that 

block is to monitor the operating parameters of 

the battery: the voltage at the terminals, the 

discharge current and the temperature, and, based 

on them, estimate its state parameters: SoC, State 

of Health (SoH), State of Energy (SoE) and State 

of Power (SoP) [1]. The main state parameter of 

the battery is SoC, which represents the ratio of 

battery capacity at a certain time and its rated 

capacity. There are several methods for 

determining the SoC, of which the most 

important are: OCV measurement method 

(OCV) [5], Coulomb-counting approach (Ah) 

[6], internal resistance method [7], impedance 

measurement [8] artificial neural networks [9], 

Kalman filter [10], [11], and so on. 

Out of these, the Coulomb-counting 

method is the most straightforward [6]. It is 

based on the integration of the discharge current 
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Fig. 1.Third order RC network battery model 

 

within a certain time interval, and thus it is easier 

to implement in the BMS. The main 

disadvantage of this method is that it suffers 

from the accumulated errors from current 

measurement drift [2] and difficulties in 

establishing the initial SOC. Besides, the 

precision of the method is affected by the 

fluctuations of the discharge current and 

environment temperature [12]. 

To overcome these problems, in recent 

years, a series of techniques have been developed 

for determining the SoC, which are based on the 

use of closed loop measurements. They use the 

battery model and various observers to 

accurately determine the SoC at a given time. 

The most important of these are: adaptive sliding 

mode observer (SMO) [2], nonlinear adaptive 

observer [13], dual-circuit observer states [1] and 

so on. SMO is used to reduce measurement 

errors, disturbances and modeling errors. In [2] a 

self-adjusting SMO is used to determine the SoC 

for a Li-Ion subjected to discharging and loading 

in keeping with a Hybrid pulse test, and a 

maximum relative error is obtained which ranges 

between 0.0089 and 0.0199 %. In [13] a non-

linear adaptive observer is used to extract OCV 

from the voltage across the terminals of the 

battery. This value is then used to determine the 

SoC using a look-up table relationship between 

OCV and SoC. Through this method a maximum 

error of approx. 3% is reported in determining 

the SoC for a Li-Ion. Following a different 

approach, in [1] a dual circuit state observer is 

used, which is composed of a parameters-

normalized PI based state observer and a 

practical approach to correct the current drifting. 

Based on it, an error less than 2.5% is obtained 

for an LFP battery subject to discharge in 

keeping with a dynamic cycle. 

In the present study the authors’ own 

variant is presented of an adaptive observer 

devised to determine the SoC of an LFP battery. 

It uses a neural network to determine the initial 

battery SoC, and then it estimates the SoC by 

Coulomb-counting techniques and by 

determination of the variation of the battery 

terminals voltage, compared with the output 

voltage of the model.  The rest of the paper is 

organized as follows: the presentation of the LFP 

battery model, in Section 2, the development of 

the adaptive observer in Section 3, the results 

obtained from the experimental measurements 

using the UDDS discharge cycle, in Section 4, 

and the last part contains the conclusions. 

 

2. THE LFP BATTERY MODEL 
To represent the behavior of the LFP 

battery subjected to discharge, a third order RC-

network model was chosen because it is the 

optimal model for automotive applications which 

involve rapid discharge current variations, as in 

the UDDS cycle [14]. 

The battery model – Fig. 1 – consists of a 

current-controlled voltage source whose value – 

E0 is estimated by the OCV vs SoC curve, an 

internal resistance R0, which models the 

evolution of the internal resistance of the battery 

in accordance with SoC, and three parallel 

resistor-capacitor groups (R1-C1, R2-C2, R3-C3) 

that capture the effects of polarization occurring 

within the discharge 

 

A) Determination of the parameters of 

the model 

Model parameters determination was done 

following an extensive experimental study 

conducted in accordance with USABC manuals 

[15] and PNGV [16]. 

Following that study, the parameters – 

Table 1 – were determined for 16 different SoCs, 

focusing on the discharge interval between 80% - 

20% SoC. 
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Fig. 2. Model implementation 
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Fig. 3. Adaptive observer structure 

 

Table 1 Third order RC network parameters 

estimation 
SoC 100% 90% 80% 75% 70% 

E0 [V] 3.425 3.333 3.333 3.323 3.313 

R0 [Ω] 0.169 0.135 0.150 0.160 0.131 

R1 [Ω] 0.014 0.019 0.014 0.004 0.038 

C1 [F] 686.8 515.1 686.8 2060 257.5 

R2 [Ω] 0.01 0.004 0.01 0.001 0.019 

C2 [F] 309.2 618.5 309.2 1545 154.5 

R3 [Ω] 0.004 0.029 0.004 0.002 0.019 

C3 [F] 1030 171.7 1030 1716 257.5 

SoC 65% 60% 55% 50% 45% 

E0 [V] 3.303 3.292 3.292 3.292 3.292 

R0 [Ω] 0.150 0.140 0.155 0.155 0.160 

R1 [Ω] 0.019 0.01 0.024 0.008 0.033 

C1 [F] 515 1030 412 1145 294.3 

R2 [Ω] 0.011 0.007 0.003 0.002 0.009 

C2 [F] 257.5 390.3 772.6 1293 309 

R3 [Ω] 0.017 0.007 0.005 0.003 0.014 

C3 [F] 286.1 645.1 858.4 1432 343.3 

40% 35% 30% 25% 20% 10% 

3.292 3.282 3.272 3.262 3.241 3.201 

0.145 0.145 0.145 0.155 0.135 0.155 

0.014 0.024 0.024 0.014 0.033 0.033 

686.8 412 412.2 686.8 294.3 294.3 

0.01 0.003 0.015 0.013 0.007 0.005 

09.2 772.6 193.2 220.7 386.5 515.4 

0.014 0.005 0.023 0.020 0.011 0.008 

343.6 858.5 214.6 245.2 429.5 572.7 

 

B) The model implementation 

Approximation of the evolution of the 

parameters in concordance with the SoC, as part 

of the model, is done using a Feed-Forward 

Neural Network (FFNN). This type of network 

was chosen because it best approximates the 

evolution of the parameters of the LFP battery 

for the UDDS discharge cycle [17]. The 

architecture of the proposed FF network consists 

of one neuron in the input layer for SoC, nine 

neurons in the hidden layer, and five neurons in 

the output layer for the model parameters. The 

nine neurons of the hidden layer were obtained 

through trial-and-error so that the neural network 

would not be overfitted or underfitted. 

The model thus developed was implemented 

in Matlab/Simulink and is shown in Fig. 2. 

 

3. THE DEVELOPMENT OF THE 

ADAPTIVE OBSERVER 

The main contributions of this paper lie in 

developing an adaptive observer which is meant 

to determine the SoC of the LFP battery 

subjected to discharge. The observer gets, as 

input values, the discharge current, the voltage 

across the terminals of the battery, and the output 

voltage of the model provides the SoC of the 

battery. 

The structure of the observer – Fig. 3 – 

comprises a block for determining the initial 

SOC of the battery and a block for correcting it 

when the voltage across the terminals very much 

differs from the output voltage of the model. 
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Fig. 4. Initial SoC estimating block 

 

 

Fig. 5. SoC correction block 
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Fig. 6. SoC estimation for an UDDS full cycle 
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Fig. 7. SoC estimation for an UDDS cycle that 

starts at   SoC = 41% 

 

When the discharge process starts, the 

block for determining the initial SoC of the 

battery reads the voltage at the battery terminals 

and approximates its SoC, which it then conveys 

to the model. The latter determines the value of 

the parameters and provides an output voltage 

that should be close to the value of the voltage 

across the terminals of the battery. If between the 

two voltage values the difference is greater than 

40 mV, then the correction block intervenes and 

adjusts the SoC value so that the output voltage 

of the model be close to the voltage at the battery 

terminals. During the discharge, determining the 

battery SoC is done by means of Coulomb-

counting techniques, with the correction block 

intervening to keep the output voltage of the 

model close to the voltage at the terminals of the 

battery, thereby eliminating the accumulation of 

measurement errors. 

The block for determining the initial SoC 

– Fig. 4 – is composed of a FFNN that has a 

similar structure to that used in the model. In the 

initial layer there is one neuron for the voltage at 

the battery terminals, nine neurons in the hidden 

layer, and one neuron in the output layer for the 

SoC. The network is trained with the data in 

Table 1, using the Levenberg-Marquardt 

algorithm. 

The error correction block – Fig. 5 – 

follows the evolution of the voltage values at the 

terminals of the battery and at the output of the 

model. If the differences between these values 

are greater than ± 40 mV (greater than the 

measurement error introduced by the sensor), the 

observer intervenes and adjusts the SoC that is 

part of the model by ±0.025%. Through these 

discrete steps, the output voltage of the model is 

reset to the values of the voltage at the battery 

terminals, and the model SoC is considered to be 

the SoC of the battery. 

 

 

4. RESULTS AND DISCUSSION 

Determining the performance of the 

adaptive observer was done by direct comparison 

of the results it provides against the data obtained 

from the discharge of an LFP battery in 

concordance with the UDDS discharge cycle. 

Comparison of the results was made both 

for the entire UDDS cycle, and for the two 

discharge profiles extracted from it, which start 

from SoC = 76%, respectively 41%. The results 

obtained are shown in Fig. 6, 7 and 8. 
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Fig. 8. SoC estimation for an UDDS cycle that 

starts at SoC = 76% 

  

After the analysis of the results, it is 

observed that, in all three cases, the maximum 

errors are reached within moments of the start of 

the discharge process, when the observer is 

trying to estimate the initial SoC. At that stage 

the values of those errors are 10.26% for the full 

UDDS cycle, respectively 3.60% and 6.54% for 

the other profiles. Those errors, although big 

enough, do not significantly influence the 

performances of the observer because they act 

over a short period of time, and after the 

intervention of the correction block the values 

are significantly reduced reaching values of 

5.83% for the full UDDS cycle, respectively 

0.43% and 0.93% for the other profiles. 

 

5. CONCLUSIONS 

 

This paper presents a technique for 

determining the SoC of a battery involving the 

use of an LFP battery model and an adaptive 

observer. The structure of the observer comprises 

a unit devised to determine the initial SoC of the 

battery and a correction block. The block for 

determining the initial SoC is composed of an 

FFNN which gets the input voltage from the 

battery terminals and supplies its SoC at the 

output. The correction block compares the 

voltage across the battery terminals with the 

voltage at the model output, and if the 

differences exceed ± 40 mV, it intervenes on the 

current SoC value. The observer we developed 

was tested for an LFP battery subjected to 

discharging in keeping with the UDDS cycle, 

and we obtained an error of about 5%. 
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