

ISSN – 2344 – 2158

VIRTUALIZATION IMPACT ON COMSOL PROCESSOR DETECTION

Valeriu Manuel Ionescu, Dumitru Cazacu
University of Pitesti, ROMANIA

valeriu.ionescu@upit.ro

Keywords: virtualization, COMSOL, CPU detection, NUMA node

Abstract: Running operating systems in a virtual environment is necessary to allow isolated

systems to share the same hardware resources. The hypervisor handles the resource

management and presents to the virtual operating system a user configurable hardware

structure that can differ from the physical hardware structure. Some applications, like

COMSOL Multiphysics, need to detect correctly the underlying hardware in order to obtain

the best performance. This paper investigates how virtualized hardware to real hardware

mapping affects the performance of the software running in a virtualized operating system.

1. INTRODUCTION
Virtualization is a technology that existed

for a long time [1] and allows applications and

operating system to run in isolation. We will

call the operating system that runs on top of

the virtual machine guest OS and the one that

runs directly on the hardware and runs the

virtualization system host OS. The

virtualization in the host operating system is

handled by the hypervisor application.

The virtualization system modifies the way

a guest operating system detects the hardware,

therefore applications that are dependent on the

proper detection of the hardware structure can

behave abnormally, from generating errors to

low performance.

COMSOL Multiphysics is an application

that presents to the user a simulation

environment that gives results very close to the

effects observed in reality related to electrical,

optics, mechanical, acoustics and other

domains. This application is dependent on the

proper detection of the existing hardware in

order to give its maximum performance, as

versions earlier then 4.0 are ignoring hyper

threaded CPU cores [2].

The introduction of multi core computers

and the evolution of computer hardware

according to Moore’s law brought enough

performance to allow running virtualized

operating systems on affordable low cost

hardware.

Previous research [2, 3] has shown that in

multi core systems it is important to correctly

assign the processing resources to get the best

performance.

This paper analyses how COMSOL

Multiphysics performance will be influenced

by running in a guest OS with multiple CPU

virtualization options (by varying the number

of CPUs and the number of CPUs/core is

presented to the virtual machine) and what are

the necessary steps to improve the application

performance.

2. HARDWARE

VIRTUALIZATION
Hardware virtualization is a component of

the virtualization that allows the creation of a

software version of a hardware system. In this

way it is possible to run multiple isolated

operating systems on a single computer,

improving the hardware utilization and

controlling their interaction.

Virtualization offers major advantages:

-machine management is easier and faster

because it is centralized and automation is

usually available;

-reduces power consumption and capital

expenditure as the number of virtual machines

is independent of the number physical

machines;

mailto:valeriu.ionescu@upit.ro

26 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE Vol.15, Issue 2, 2015

Fig. 1 A single server running virtualized operating systems can perform the tasks of multiple physical machines

at a fraction of the hardware cost, necessary space and power consumption

-backup and restore actions are easy to

perform and ensure non-stop operation;

-software deployment time is reduced as

the environment independent from the actual

hardware particularities;

-software testing is sped up because it can

be performed in a controlled and repeatable

environment.

If used as an application server, ideally a

single application or service should run on the

operating system because all the available

resources are available for that service and

problems are easier to detect and solve. As

server resources are not used at all times, it is

possible to place multiple servers on the same

physical machine. Because the relation to the

number of physical machines is no longer 1:1,

the resources are better used (Fig. 1).

Virtualization, however, has its own

problems and limitations:

- while a guest OS can migrate to a new

server with a different underlying (host) CPU

architecture, problems happen when live

system migration is tried between servers

running hypervisors on different CPUs types;

- the speed of an applications running in

a guest OS is reduced compared to a classical

application by a small percentage;

- as many applications have specific

requirements related to the hardware

characteristics (for CPUs this may involve

different feature/flags that specify the

instruction set which may be necessary for the

application to run) they may run with

performance penalties or not run at all. For

example the NX flag that allows the marking

of memory area as dedicated to code or to data

(non-executable memory areas) can be easily

presented or hidden to the guest operating

system [4]. VirtualBox hypervisor has an

“Enable PAE/NX” option to present or not this

bit to the guest OS.

- CPU type presented by the hypervisor to

the guest operating system is different. By

default, the CPUs reported by the virtualization

system to the guest CPU are seen as separated

physical CPUs not hyper-threaded CPU cores

[5]. Also in the case of AMD Fx line of

processors, the relation is 2 integer cores to 1

floating point core but the virtualization system

reports them as full processors to the guest OS.

3. NON-UNIFORM MEMORY

ACCESS (NUMA) RESOURCE

ALLOCATION TO THE GUEST OS

Some operating systems have limitations

to the number of physical CPUs that can be

used (For example Windows Server 2003 and

Windows Server 2003 Standard can use a

maximum of 4 CPU sockets). Hypervisors

offer the option to report a different number of

cores per CPU and set the CPU affinity for the

guest operating system for compatibility

purpose.

As almost any combination of CPUs and

cores is possible, but not all combinations

present the same performance [3]. This

happens because on systems with large number

of processors, per core memory allocation and

30%

45%

10%

5%

90%

Server (with multiple virtual

operating systems) load

Physical servers load

Valeriu Manuel Ionescu, Dumitru Cazacu

VIRTUALIZATION IMPACT ON COMSOL PROCESSOR DETECTION 27

ISSN – 2344 – 2158

memory bandwidth are key factors in the

performance.

Non-uniform memory access (NUMA) is a

computer design that presents non-local

memory to the nodes via a fast connection.

Each node has its own local memory that can

be accessed very fast but can also access data

from non-local memory (memory available on

other nodes through the fast connection) called

foreign memory, but the access to it is slower

compared to the local memory because it needs

to be moved between processor caches.

The memory access times through the

NUMA connection differ, depending on the

node’s location relative to the accessed

memory location.

For example a 4 core CPU, each core with

4 physical processors moves data faster inside

a CPU core then between different cores.

As users can specify any CPU resource

configuration for a virtual system, if two CPUs

from different cores are grouped by the

hypervisor in a single logical (virtual) CPU

core, moving the data between the two real

cores can become extremely costly and lead to

performance loss.

4. INTEL HYPERTHREADED

CPU

Hyperthreading [6, 7] was introduced by

Intel in their processors as the technology that

allows implementing two logical processors by

sharing the execution resources of a single

physical CPU core. This architecture allows

just several components to be implemented

independently in hardware (processor logic,

interrupts) while the hardware components that

take a lot of the die space (like caches, the

system bus interface).

Introducing hyper-threading resulted in an

increase of CPU performance because threads

that were blocked while waiting for resources

could release the shared execution resources

for use in other threads.

The necessity for hyper-threads was due to

the fact that many tasks were able to operate in

multi-CPU systems and their performance

scaled well with an increase in CPU count.

Fig. 2 Intel Xeon processor 7500 series die has a

large area for cache memory that is shared between

cores

Operating systems were updated to work

with this new type of processors. It was

observed that the best performance was

obtained when a single thread was allocated

per core because there was no need to share

resources between threads. This means that it

is better for the operating system to allocate the

odd CPUs first (1,3,5…), then the even CPUs

(2,4,6…) because this way you get the

maximum performance boost at first and then

you get the extra performance from hyper-

threading.

Virtualizations systems however present to

the guest OS CPUs that give the impression

that they are a single CPU per core.

The hypervisor is the one that allocates the

CPU cores as needed and by default this is

happening automatically. It is possible

however to specify a processor affinity for the

virtual machines, so that certain real CPUs are

used for the guest OS.

5. THE PROBLEM ANALYZED

IN COMSOL

The problem we considered for the

COMSOL tests is a non homogenous elliptic

PDE (Poisson equation) defined on a on a unit

square domain
22)1,0(R , bounded by

 and given by:

fu  in 

 (1)

)1/(1  yxu on 

The right hand side term f of (1) is:

Cache memory

28 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE Vol.15, Issue 2, 2015

)sin()sin(2)1/(4),(23 yxyxyxf 

 (2)

Equation (1) admits as analytical solution the

following function:

)sin()sin()1/(1),(yxyxyxu 

 (3)

In order to evaluate the convergence of the

finite element solution we computed the

normL )(2
, using the exact solution and

the finite element solution hu defined by the

following expression:

dxdyuuuu hh  


 2)(,

where h is the mesh spacing parameter.

By refining several times an initial

coarse mesh the convergence of the solutions

can be evaluated.

Fig. 3 The graphical result of the simulated problem

From the performance standpoint, the

process of refining offers the conditions to use

all the CPU cores and needs fast memory

access, therefore stressing the system and the

NUMA

6. TESTING AND RESULTS

The software used for the tests is

COMSOL version 3.4. The operating system is

Windows Server 2008 R2 that is installed in a

virtual machine. This version has support for

NUMA detection.

The operating system will first be

tested on a ESXi 5.5 (trial) hypervisor running

on a Xeon Processor E7420, 4x4CPU, 16GB

RAM, 500GB SAS storage. The trial license

was used as the free license for ESXi

hypervisor has a limit of 8 vCPUs per virtual

machine.

The test related to hyper-threading

detection inside the guest OS was made on a

i7-4720HQ CPU that has Hyper-threading

enabled.

The tests involve:

-inspecting the way the operating

system detects the CPUs and reports them to

the application;

-inspecting how the NUMA resources

are presented to the operating system;

- running the COMSOL application in

the guest OS and using the np parameter that

allows specifying the number of processors;

the effect will be tested on Intel’s hyper-

threads and AMD’s modules.

-setting the processor affinity for the

virtualization system.

7. CPU DETECTION IN A GUEST

OS

The tests were made using Intel i7-

4720HQ CPU (with 4 cores, 2 threads per

core) and Windows Management

Instrumentation (WMI). WMI can be used

(among other purposes) as a monitoring tool.

The following command was run in

the Powershell to get the necessary

information:
WmiObject -class win32_processor -Property

Name, NumberOfCores,

NumberOfLogicalProcessors | Format-List -

Property Name, NumberOfCores,

NumberOfLogicalProcessors

For a non virtual operating system

running on a system with hyper-threads

enabled, the result would show a difference

between the number of cores and the number

of logical processors:
Name : Intel(R) Core(TM) i7-4720HQ
CPU @ 2.60GHz
NumberOfCores : 4
NumberOfLogicalProcessors : 8

Valeriu Manuel Ionescu, Dumitru Cazacu

VIRTUALIZATION IMPACT ON COMSOL PROCESSOR DETECTION 29

ISSN – 2344 – 2158

For a guest OS configured as a 2 CPU

system with 4 cores/CPU, all the cores are

detected as real cores:
Name : Intel(R) Core(TM) i7-4720HQ
CPU @ 2.60GHz
NumberOfCores : 4
NumberOfLogicalProcessors : 4

Name : Intel(R) Core(TM) i7-4720HQ
CPU @ 2.60GHz
NumberOfCores : 4
NumberOfLogicalProcessors : 4

This behavior is present not only in

Windows, but also for the Linux operating

system. The results obtained by inspecting the

“/proc/cpuinfo” file for a guest OS configured

in a 2 CPU with 4cores/CPU, running the

Ubuntu 14.04 OS are:
Physical id: 0 siblings: 4 cpu cores: 4

Physical id: 1 siblings: 4 cpu cores: 4

The equal number between the number

of siblings and the number of CPU cores

shows that the cores are perceived as physical

cores. In the case of hyper-threaded CPUs the

number would have been different (double).

This test showed that if a software runs

inside a guest OS, it will be unable to detect

the best configuration (number of threads to

run on) and will assume that each CPU has no

shared components (hyper-threading) that will

decrease its performance.

8. NUMA RESOURCE

ALLOCATION AND MACHINE

PERFORMANCE

One problem is that if the virtualization

server is a multi-CPU system, the cores can be

reported to the guest OS in different ways (for

example for a system with Xeon Processor

E7420, 4 sockets with 4 processors each, you

can have a 1x16, 2x8, 4x4, 8x2 or 16x1 guest

CPUs).

As virtual CPUs are mapped on logical

CPUs (which are hardware execution contexts)

by the hypervisor, this could lead to

performance problems as the hypervisor

sometimes cannot map correctly the task

schedule on the physical processors [8].

The application used to detect the

NUMA configuration detected by the guest OS

was Coreinfo v3.31 [9].

COMSOL has a number of command

line options that allows the control over the

way it handles the number of threads it runs

via the “–np” parameter. The tests were run on

the Xeon Processor E7420 system.

By running COMSOL for the level 3

refinement level, sub domain selection element

settings set to Lagrange – Quintic, the results

presented in Table 1 were obtained.

Table 1 Test results for the Quintic

configuration, 37760 mesh elements, 473201

Degrees of Freedom

CPU configuration
2x8

5x3

4x4

NUMA nodes

detected by the

guest OS

2 5 4

Execution time (s)

no –np setting
42.121 41.9 38.891

Execution time (s)

-np 2 setting
35.2 35.506 34.819

The software was run initially without

command line options, and all the cores are

used, and while the tasks are scheduled for 16

CPUs, the performance is not the best. Then

the tests were repeated with the –np switch that

was found to give the best performance.

The 16x1 CPU configurations is a flat

configuration where the resource management

is made automatically by the hypervisor.

This would offer a good performance level

but was not tested as it is incompatible with the

installed operating system (Microsoft

Windows Server 2008 R2 Standard Edition

supports 4 physical sockets and Microsoft

Windows Server 2008 R2 Enterprise Edition

supports 8 physical sockets). Only Windows

Server 2008 R2 Datacenter allows for more

than 8 processor sockets.

For 4x4 CPU configurations, 4 NUMA

nodes are presented to the guest operating

system and they map perfectly on the

hardware.
Logical Processor to NUMA Node Map:
****------------ NUMA Node 0
----****-------- NUMA Node 1
--------****---- NUMA Node 2
------------**** NUMA Node 3

30 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE Vol.15, Issue 2, 2015

Approximate Cross-NUMA Node Access Cost (relative to
fastest):

 00 01 02 03
00: 1.0 1.0 1.2 1.2
01: 1.0 1.0 1.0 1.1
02: 1.0 1.0 1.0 1.0
03: 1.1 1.0 1.0 1.0

This configuration also offers the best

compatibility and performance level as the

virtual to physical mapping is made by the user

therefore the Cross-NUMA node access cost is

low.

Finally we tested a non-standard

configuration 5 nodes x 3CPUs each (15

CPUs), that does not map well to the hardware.

Logical Processor to NUMA Node Map:
***------------ NUMA Node 0
---***--------- NUMA Node 1
------***------ NUMA Node 2
---------***--- NUMA Node 3
------------*** NUMA Node 4

Approximate Cross-NUMA Node Access Cost (relative to
fastest):

 00 01 02 03 04
00: 1.4 1.3 1.3 1.2 1.0
01: 1.3 1.3 1.5 1.3 1.4
02: 1.3 1.3 1.3 1.3 1.3
03: 1.4 1.3 1.3 1.3 1.3
04: 1.4 1.3 1.3 1.3 1.3

This configuration offers the lowest

performance level, with large NUMA resource

access costs, as the hypervisor is unable to

make a good mapping to the hardware

resources.

 This investigation shows that there are

two possibilities to get the maximum

performance from a virtual machine:

- Presenting to the operating system all

the cores as individual CPUs. This

option will allow the hypervisor to

present to the operating system the

best configuration;

- Presenting a configuration that

matches the physical structure of the

server so that performance problems

do not occur.

In the performance tests below, the second

choice was made, that matched the physical

server structure of 4 cores with 4CPUs per

core.

Tests were then made to see how the –

np setting affects the simulation performance

for the 4x4CPU (4 NUMA) setup. This was

necessary because, if the application detects all

the cores as individual processors, it will

allocate the processing tasks for a larger

number of threads then the NUMA resources

and the performance will decrease.

Table 2 Processing speed relation to –np

setting for Q37 (Quintic configuration, 37760

mesh elements, 473201 Degrees of Freedom)

and (Quintic configuration, 151040 mesh

elements, 1890401 Degrees of Freedom)
np

setting
16 8 4 2 1

Q37

(s)
42.972 38.891 36.279 34.819 37.394

Q65

(s)

185.2

1

169.088 153.083 150.945 156.1

The results show that the best

performance is reached at 2 and 4 threads.

During this time the CPU were not used at

100% showing that there is a limit in the

data that is sent to the processor and not

the processor processing power. Using a

larger number of threads leads to

performance loss as the system has more

work to do handling the thread results and

when a single thread is used, the results are

also bad as the CPU reaches 100% and

more performance is needed.

The default CPU allocation and the

CPU thread allocation in the guest OS

shows that the CPU cores are all equal and

are used in order, stressing a single NUMA

resource, therefore not having the best

performance (Fig. 4-6).

Fig. 4 The usage of all the 16 cores by COMSOL (default setting) leads to lower performance

Valeriu Manuel Ionescu, Dumitru Cazacu

VIRTUALIZATION IMPACT ON COMSOL PROCESSOR DETECTION 31

ISSN – 2344 – 2158

Fig. 5 Using the –np 1 setting for COMSOL. The extra CPU usage is related to other tasks executed by the

operating system.

Fig. 6 Using the –np 4 setting for COMSOL. The extra CPU usage is related to other tasks executed by

the operating system. The COMSOL execution is limited to the last 4 processors on the right.

As the resource mapping is direct in a

4x4 CPU configuration, if we want to further

direct on which of the CPU’s available to the

operating system is directed the processing, we

can use the “Set affinity” option of the

Windows operating system. This setting is

recommended if a virtualization system is used

for the machine running COMSOL, because

the software (and for that matter even the

operating system) do not know exactly how

the real CPU’s are allocated by the

virtualization system.

It is also possible to set the virtual

machine (VM) CPU affinity from the

hypervisor (ESXi) in the advanced options,

“Scheduling Affinity”. This can give a 1:1 real

processor to guest OS relation if we want to

further speed up the processing for a particular

VM.

Fig. 7 Setting the processor affinity in the hypervisor’s advanced options.

9. CONCLUSIONS

This paper set the goal of testing the

performance of an application that is

dependent on proper CPU detection and

NUMA nodes for giving the best performance.

On a real operating system, the test

showed that the software detects the correctly

the hardware resources and uses them in order

to give the best performance.

In a virtualization system, the

resources are presented to the guest operating

system according to the user specification. As

the software is unable to detect the correct

configuration, it uses the processors in order,

and the user becomes responsible of the

resource usage.

The test showed that a configuration

that matches the real hardware setup is

advisable for best performance and offers the

best compatibility depending on the used

operating system.

It was observed that the best

performance was obtained not for the number

of threads equal to the number of processors

but for a lower number, the cause being the

number of NUMA nodes available on the

system and the system reaching its memory

bandwidth limitations as the processors are not

used at their full potential.

32 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE Vol.15, Issue 2, 2015

The results show that if it is necessary

to obtain the best performance from a system

running in virtual environment test are

necessary to obtain the best that include a

physical to virtual resource mapping

assessment.

BIBLIOGRAPHY

[1] Uhlig, R. et al.; "Intel virtualization

technology," IEEE Computer , vol.38, no.5, pp.

48-56, May 2005

[2] Joseph Dieckhans. The Importance of VM Size

to NUMA Node Size, Posted on February 8,

2012, Available at:
https://blogs.vmware.com/vsphere/2012/02/vsp

herenuma-loadbalancing.html , Accessed:

11.11.2015

[3] J.D. Freels, I.T.Bodey, R.V. Arimilli. Exploiting

New Features of COMSOL Version 4 on

Conjugate Heat Transfer Problems,

Proceedings of the COMSOL Conference

Boston, 2010

[4] VMware, Inc. Workstation 12 Pro

Documentation Center, 2015, Available at:

http://pubs.vmware.com/workstation-

12/topic/com.vmware.ICbase/PDF/workstation

-pro-12-user-guide.pdf, Accessed: 11.11.2015

[5] VMware, Inc. Setting the number of cores per

CPU in a virtual machine (KB1010184)

Available at:

http://kb.vmware.com/selfservice/microsites/se

arch.do?language=en_US&cmd=displayKC&e

xternalId=1010184 Accessed: 11.11.2015

[6] Michael E. Thomadakis, The Architecture of

the Nehalem Processor and Nehalem-EP SMP

Platforms, Supercomputing Facility, Texas

A&M University, March, 17, 2011, Available

at: http://sc.tamu.edu/systems/eos/nehalem.pdf

Accessed: 11.11.2015

[7] D. A. Patterson, J. L. Hennessy. Computer

Organization and Design: The

Hardware/Software Interface, 4th ed. Morgan-

Kaufmann Publishers Inc., 2009, ISBN: 978-0-

12-374493-7.

[8] VMware Inc, Performance Best Practices for

VMware vSphere® 5.5 VMware ESXi™ 5.5

vCenter™ Server 5.5, May 14, 2014, Available

at:

http://www.vmware.com/pdf/Perf_Best_Practic

es_vSphere5.5.pdf, Accessed: 11.11.2015

[9] Mark Russinovich, Coreinfo v3.31,

https://technet.microsoft.com/en-

us/sysinternals/cc835722.aspx, Published:

August 18, 2014

https://blogs.vmware.com/vsphere/2012/02/vspherenuma-loadbalancing.html
https://blogs.vmware.com/vsphere/2012/02/vspherenuma-loadbalancing.html
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1010184
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1010184
http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1010184
http://sc.tamu.edu/systems/eos/nehalem.pdf
http://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.5.pdf
http://www.vmware.com/pdf/Perf_Best_Practices_vSphere5.5.pdf
https://technet.microsoft.com/en-us/sysinternals/cc835722.aspx
https://technet.microsoft.com/en-us/sysinternals/cc835722.aspx

