
ISSN – 2344 – 2158

NEURAL PATTERNS EDITOR, A JAVA APPLICATION FOR

EDITING AND ANALYSING PATTERNS FOR TRAINING OR

TESTING NEURAL NETWORKS

Alexandru Ene
1
, Andrei Ene

2

1
Department of Electronics, Computer and Electrical Engineering, University of Pitești, Argeș, România

2
Computer Science student, University of Pitesti Romania,

1
alexandru.ene@upit.ro,

2
 abi.moonbow@yahoo.com

Keywords- neural network, training patterns, graphical editor

Abstract – Neural Patterns Editor is a graphical application used for creating binary patterns that

are used with neural networks (for the training or for the testing). It is also used for storing the

patterns in text files, editing, viewing, deleting and for showing relationships between patterns. The

application is written in the Java language.

I. INTRODUCTION

Feed forward neural networks are parallel

devices that consist from interconnected

processing units (artificial neurons) that are

grouped in layers. They have an input layer, one

or more hidden layers and an output layer. These

networks are used in pattern recognition

applications, their main advantage being that they

do not need an exact mathematical algorithm for

solving the problem of recognition. Instead, they

learn to recognize an image or to classify it, using

a set of predefined examples, in the same manner

as human beings learn to recognize hand written

digits or letters [2]. The examples that are used by

the neural network to learn to classify an image

are called training patterns. Each training pattern

consists of two sets of data:

- the input part of the pattern that are the data that

apply to all the inputs of the network.

- the output part of the pattern that are the ideal

outputs of the neural network, when the input part

of the pattern is applied on the inputs of the

network.

The feed forward neural networks are trained

to learn to classify a set of patterns through the

backpropagation algorithm [1][4] :

- specify a ERROR for learning all the

patterns

- initialize the weights with small random
values

-set flag hasConverged to false

-while(not hasConverged) do

 begin

 for all training patterns do

 begin

forward propagate the current input
pattern (compute all the outputs of the
neurons)

compute the learning error for the
current pattern

backpropagate (compute the new
weights, using delta rule)

 end for

 compute E, the total error of learning

 if E<=ERROR than

 set flag hasConverged to 1

 end while

If the network does not converge i.e. if it

cannot learn the training set of patterns in a

specified maximum number of epochs the first

thing that has to be done is to repeat the training.

By repeating the training, the backpropagation

algorithm will start using different values for the

weights (because these are randomly initialized).

So is possible now for the network to converge.

This is the simplest method to be tried in order to

solve the non-convergence problem.

But if the network still does not converge we

have to look carefully over the training patterns

mailto:alexandru.ene@upit.ro
mailto:abi.moonbow@yahoo.com

34 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE Vol.15, Issue 2, 2015

[4]. A bad training set is typical for the non-

convergence of feed forward neural networks.

A feed forward neural network can have only

binary inputs (only the input values 0 or 1), only

analog inputs (for instance any value in the

interval [0, 1] or mixed inputs (some inputs are

binary, some are analog).

In this paper we present a software application

called Neural Patterns Editor, that is very useful

for binary feed forward neural networks, for

creating and editing training patterns.

II. THE MAIN COMPONENTS OF THE

APPLICATION

Neural Patterns Editor has four main

components:

- graphical editor

- patterns viewer

- file splitter

- relationships discovery module

Graphical editor allows the user to create

and to save binary patterns, as illustrated in the

Fig. 1.

Fig. 1 Graphical editor

The current pattern is saved in a text file,

patterns.txt, at the end of it. All saved patterns are

written in this file. For the example shown in

figure 1, the following lines are written at the end

of patterns.txt:

0 1 1 1 0

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

0 1 1 1 0

1 0 0 0 0 0 0 0 0 0

 The current pattern is not saved if the outputs of

the pattern are not correctly completed. There has

to be a single and only a single activated output,

as illustrated in figure 2 and figure 3.

Fig. 2 The current pattern is not saved if the outputs of

the pattern are not correctly completed

Fig. 3 Warning message

 The current pattern is not saved also if the inputs

of this pattern have been saved before as another

pattern. In the case the user receives a warning

like this:

Fig. 4 Pattern saved message

Mariana Iorgulescu

STUDY OF POWER QUALITY IMPROVEMENT. FILTERS 35

 So, the software prevents duplication of the

patterns. A pattern that is good (its input part) is

recorded in memory, in a bidimensional array(

patt[][]). All good patterns (the input part of a

pattern) are stored in this array. So, at the

beginning of array patt[][] is stored the input

part of the first training pattern, after it, in the

same array is stored the second pattern, etc. A

good pattern is also saved permanently in the text

file patterns.txt.

 We present briefly the algorithm that verifies if

a new pattern has a duplicate. We use the

following notations:

NP - current number of patterns

nL – number of lines of a pattern

nC – number of columns of a pattern

The algorithm is:

for i=0 to NP do

begin

 set flag isDifferent to false

 for j=0 to nL do

 for k=0 to nC do

 if currentPattern[j][k] ≠ patt[i*nL+j][k] than

 set flag isDifferent to true

end

Patterns viewer

This tool allows the user to visualize all the

patterns that are stored in the file patterns.txt .

The user can navigate through the patterns, in

both directions, using the buttons Back and Next.

Fig. 5 Pattern delete

If the user considers that a pattern is not good,

he may delete it permanently from the patterns

file, using the button Delete as illustrated in

figures 5 and 6.

File splitter is a software tool that copies all

patterns from the same class (those that have the

same outputs) from the big patterns.txt file to a

separate file. So, for a neural network that learns

to recognize the digits from 0 to 9, the file splitter

tool will create 10 files: patt0.txt that groups all

patterns for the 0 digit, patt1.txt that groups all

patterns for the 1 digit, etc. For these new created

files, the patterns viewer tool can be used, in

order to view them or to delete some patterns.

Fig. 6 Pattern delete example 2

Relationships discovery module is a

software tool that uses each file created by file

splitter tool, in order to find relationships

between patterns from the same class. It finds out

which are the two most different patterns from

the same class and which are the two patterns that

have the most resemblance. This software tool is

useful when the neural network does not succeed

to learn the patterns set, and we have therefore to

examine them closely.

III. EXAMPLE OF AN APPLICATION

In [3] the authors had presented a method for

the selection of the weights set of a feed forward

neural network. To illustrate this method, there

was used a feed forward neural network that had

to classify a 9x9 image of black and white pixels

36 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE Vol.15, Issue 2, 2015

in three classes: vertical line, horizontal line and a

cross line. The authors used an 81-20-3 feed

forward neural network (81 input neurons, 20

hidden neurons and 3 output neurons) and they

had developed 15 training patterns in order to

train the network (5 patterns for each output

class). These patterns were manually edited in a

text file using Notepad editor.

For this task we could better use the Neural

Patterns Editor. Firstly, the configuration file has

to be created. It has three lines: the first line in

this file specifies the number of lines of a pattern,

the second line specifies the number of columns

of a pattern and the third line specifies the

number of outputs of the neural network. So the

configuration file for this specific problem is:

9

9

3

Then we use our graphical editor tool in order

to build and save all 15 patterns, and then we use

the patterns viewer in order to examine the

patterns.

Fig. 7 Typcal pattern for a vertical line

A typical pattern for a vertical line, built with

Neural Patterns Editor for this problem, is

presented in Fig. 7.

After all the 15 patterns have been built, the

resulted file, patterns.txt, is used by the specific

neural software [3] to train the network.

If the network does not converge in the

specified number of epochs and if this is caused

by the training set of patterns, we have the

possibility to analyze the patterns using file

splitter tool in order to group the patterns from

the same output class and to use the relationships

discovery module in order to analyze

comparatively the patterns from the same

category.

IV. CONCLUSIONS

In this paper it was presented a Java graphical

application that is used for creating binary

patterns for the training or testing of feed forward

neural networks.

This application is also used for storing the

patterns in text files, editing the patterns (modify

or delete), viewing the already stored patterns and

for showing some relationships between patterns.

This graphical editor could be very easy

modified in order to create patterns that are used

with other types of neural networks (for instance

for Hopfield neural networks).

REFERENCES

[1] A. Blum, Neural networks in C++, John

Wiley,1992.

[2] Anton, C-tin, Stirbu, C., Badea R.V.,

“Automatic Hand Writer Identification Using the

Feed Forward Neural Networks”, World Congress

on Internet Security (WorldCIS 2011), February

21-23, 2011, London, UK, pp. 304-307.

[3] Al. Ene, C. Stirbu, “Weights set selection

method for feed forward neural networks” ECAI

2013, International Cionference 5
th

 edition, 27-29

iunie, Pitesti

[4] Al. Ene, C. Stirbu, Retele neuronale. Teorie si

aplicatii in Java, Ed. Universitatii din Pitesti, 2008.

