
pISSN: 2344-2158

DESIGN AND IMPLEMENTATION OF A TRANSLATOR FOR

CONVERTING A MINIMALIST LANGUAGE TO VHDL

Mihai-Ionuț VÎLCU
1
, Florin-Marian BÎRLEANU

2

University of Pitești, Faculty of Electronics, Communications and Computers
1
mihai.vilcu93@gmail.com,

2
florinmarianb@yahoo.com

Keywords: logic circuit design, high-level synthesis, hardware description languages, web

applications

Abstract: This paper presents the design and implementation of a software application that

performs the conversion of an algorithm, written in a high-level language, into a VHDL

description of the logic circuits required for the hardware implementation of that algorithm. The

minimalist language allows the user to define variables, to test conditions and to implement loops

and simple mathematical expressions. The entire application was implemented by using the

JavaScript language and runs in a web browser.

1. INTRODUCTION

FPGA circuits [1] are a very flexible

solution for implementing digital circuits that are

compact and fast. They have the advantage of

not requiring physical connections between

components, as these connections are made by

writing the contents of a binary file into a

configuration memory. The drawback, however,

is that constructing the configuration file is not

an easy task.

Despite the fact that it is commonly named

programming, the configuration of FPGA

circuits can not be performed by a software

programmer. That is because the FPGA circuit is

not a microprocessor that allows the user to load

a program for it to run, but is a collection of

basic logic circuits that can be interconnected.

The configuration file for an FPGA is not made

of a series of instructions, but it is made of a

series of connections. This file is not the result of

compiling a program; it is the result of describing

a circuit.

The most flexible method for describing

digital circuits is a text description by using the

VHDL hardware description language [2].

Despite its similarity with a programming

language, VHDL can not be used for writing

programs, but for describing circuits. It is true

that, given a certain software algorithm, an

FPGA expert can design a circuit that can

perform the same function as the algorithm

(either without any microcontroller involved, or

with an ad hoc design of a custom minimalist

microcontroller). However, this is not an easy

task; and by no means can it be performed by a

software programmer with very little hardware

design experience.

A solution for allowing the (almost)

transparent configuration of FPGA circuits by

sofware programmers is high-level synthesis [3].

It consists in writing the desired algorithm in a

high-level programming language and then using

a software translator that is able to translate the

algorithm into a sequential logic circuit that will

perform the same function. Such translators are

discussed in papers [4] and [5].

This paper presents the design and

implementation of a software translator used for

processing and transforming a minimal langauge

(similar to the language described in [4]) into a

VHDL description. The basic principle of this

process is a lexico-syntactic analysis of the input

source code which transforms this code into a

finite automaton that is afterwards translated into

VHDL code.

The rest of the paper is organized as

follows. The graphical user interface of the

application is described in Section 2. The source

language of the translator is presented in Section

3. Section 4 describes the structure of the

translator and its components. Section 5 shows

results obtained by running the application.

Conclusions are presented in Section 6.

26 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTER SCIENCE, Vol.16, Issue 2, 2016

pISSN: 2344-2158

2. GRAPHICAL USER INTERFACE

AND FUNCTIONS

Nowadays web interfaces are more and

more used for developing applications in many

fields. These interfaces are built with the aid of

technologies such as HTML5, CSS3 and

JavaScript, which are constantly being

developed.

The graphical user interface of our

application is split into four sections (illustrated

in Fig. 1) that offer an overview of the process of

translating the source code to VHDL. The first

section (located on the left side of the screen)

contains the source code (written in our

minimalist programming language) that is input

by the user.

The second section (located on the bottom

of the screen) contains a list of the tokens

indentified (in real time) from the source code.

The third section (located on the right side

of the screen) shows the VHDL code generated

(in real time) by the translator.

The fourth section (located on the top-

right of the screen) is a menu that allows the user

to study code samples, as well as to view the

syntax tree (corresponding to the source code)

and the graph (generated from the syntax tree).

Fig. 1 The graphical user interface of the application and its four components: (1) input, (2) tokens, (3) output,

(4) menu.

3. SOURCE LANGUAGE

3.1. Input/output ports

A program written in our minimalist

langauge must begin with the declaration of the

input/output ports. They can have 1-bit values (of

std_logic type, in VHDL) or multi-bit values (of

std_logic_vector type, in VHDL). When

declaring a multi-bit port, its name must be

succeeded by its size written inside square

brackets. Ports can be declared only at the

beginning of the program. The attempt to declare

a port in the middle of the program generates a

syntax error.

A port is declared with the input (for an

input port) or output (for an output port)

keywords, followed by the name of the port (and,

possibly, by its size). Additionaly, the

declarations of multiple ports of the same type

can be combined into a single declaration that

uses the input/otput keyword followed by the

names (and optional dimensions written inside

square brackets), separated by commas. The

following code shows some examples:

// declaraing ports
input c, d[1:0];
output rez, data[2:0];

3.2. Variable declarations

Variables can be, as well as ports, single-

bit or multi-bit. In order to declare a multi-bit

Mihai-Ionut VILCU, Florin-Marian BIRLEANU

DESIGN AND IMPLEMENTATION OF A TRANSLATOR FOR CONVERTING A MINIMALIST LANGUAGE TO VHDL 27

pISSN: 2344-2158

variable, its name must be followed by its size

written inside square brackets.

A variable is declared by using the let

keyword followed by the name of the variable,

its size (optionally) and its initialization with a

value (optionally). As well as in the case of port

declarations, several variable declarations can be

combined into a single instruction, as the

following code fragment shows:

// declaring variables
let a = 0, b, c[2:0];

3.3. Decisions

Conditional instructions allow the

execution of a certain code sequence based on

the truth value of a condition. In the minimalist

language presented in this paper, decisions are

made with the if keyword followed by a pair of

parentheses containing the condition to be tested

and by a pair of curly braces containing the set of

instructions to be executed if the condition is true

and (optionally) by the else keyword and by the

set of instructions (inside curly braces) to be

executed if the condition is false. If the set of

instructions contains a single instruction, the

curly braces can be omitted. Some examples of

use are presented in the following code fragment:

// if-else instruction
if (a > 2)
{
 i = i + 1;
}
else
{
 j = j + 1;
 k = k + 1;
}
// if-else with single instructions
if (a > 2)
 i = i + 1;
else
 j = j + 1;

3.4. Loops

Loops allow the execution of a certain

code sequence repeatedly while the tested

condition is true. In our minimalist language

loops are written as the while keyword followed

by the condition to be tested (placed inside a pair

of parentheses) and by the code sequence to be

repeated (placed inside a pair of curly braces). If

the code sequence contains a single instruction,

the curly braces can be omitted. Inside loops

forced continuation (continue) of interruption

(break) instruction can be used. The following

code fragment shows some examples:

// while
while (j >= 1)
{
 j = j - 1;
}
// while with a single intruction
while (i >= 1)
 i = i - 1;
// while with break and continue
while(2 > 1)
{
 if (i == 0) {
 break;
 }
 i = i + 1;
 if (i == 9) {
 continue;
 }
 i = i * 5;
}

3.5. Assignments

An assignment instruction is composed

of a variable name followed by the assignments

operator and by a mathematical expression

followed by a semicolon. The role of such an

instruction is to assign the computed value of the

expression to the variable. Some examples are

presented here:

// assignments
i = a[0] + b - 1;
// unary operators
d = !b;
d = -b;
// binary operators
d = a[0] * b / (4 + 5 - 2);
// concatenation operator
c[2:0] = a[2:1] & b;

4. APPLICATION DEVELOPMENT

The process of source code translation

from the minimalist language to VHDL consists

of a series of successive transforms that are

performed by the four components shown in Fig.

2 – Lexer, Parser, Grapher and Texter. The role

28 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTER SCIENCE, Vol.16, Issue 2, 2016

pISSN: 2344-2158

of the Lexer block is to process the text received

as input in order to generate tokens for each

lexical atom recognized. The Parser has the role

to process the series of tokens received from the

Lexer in order to generate the abstract syntax

tree.

The Grapher processes the syntax tree

received from the Parser in order to generate an

oriented graph that represents the logic of the

algorithm described with the minimalist

language. The Texter generates source code in

the target language (VHDL) based on the graph

received from the Grapher.

Fig. 2 The block diagram of the translator.

4.1. Lexical analysis

The Lexer processes the source code

(written in the minimalist language) one

character at a time. When it identifies a lexical

atom it outputs it and then it resumes the process

[6]. The output is, hence, a list of tokens.

A token is a data structure that contains

information about the type of the lexical atom, its

actual value and its position in the initial text.

The identification of the lexical atoms is

performed by the getToken method, which

recognizes and returns the next token found in

the source text. This is performed by analysing

the current character and the next one.

The algorithm used by the getToken

method for processing the source code and

returning the next token is as follows:

1. Jump over whitespaces

2. If reached the end of the source code, return

EOF
3. Get current character

4. If beginning of a comment, process the

contents of the comment and build a token of

type COMMENT; return the token

5. If current character and the next one form a

special operator (e.g.: ==, != etc.), build a

token of the corresponding type; return the

token

6. If current character is a simple operator (=,

<,> etc.), build a token of the corresponding

type; return the token

7. If current character combined with the next

one is the beginning of a hexadecimal

number, process the contents of the number,

build a token of type NUMBER_HEX;

return the token

8. If current character is a number, process the

contents of the number, build a token of type

NUMBER; return the token

9. If current character is the beginning of an

identifier, process characters until the end of

the identifier

a. If the obtained identifier is a keyword,

build a token of the corresponding

type; return the token

b. Otherwise, build a token of type

IDENTIFIER; return the token

10. If current character is a newline, build a

token of type EOL; return the token

11. And go to the next character

12. Otherwise, if no valid token found, build a

token of type NOTKNOWN; return the

token

4.2. Syntax analysis

The Parser processes the tokens

generated by the Lexer and generates the abstract

syntax tree based on a context-free grammar.

During this process the syntactic corectness of

the source code is also performed. Table 1

describes the grammar [7] used for the

minimalist language implemented in this paper.

Table 1 The context-free grammar of our minimalist

language

<Program> → ε | <Instructions>

<Instructions> → <Instruction> <Instruction>*

<Instruction> →

(ε | <Port> | <Assignment> |

<Decision> | <Repetition>)

”;”

<Assignment> →

(ε | ”let”) <Variable> ”=”

<Expression> (”,”

<Variable> ”=”

<Expression>)*

<Variable> →

<Identifier>

(”[”<Number>”:”<Number>

”]” | ”[”<Number>”]” | ε)

<Identifier> →
<Letter> (<Letter> |

<Digit>)*

<Letter> → a | b … | z | A | B … | Z | _

Mihai-Ionut VILCU, Florin-Marian BIRLEANU

DESIGN AND IMPLEMENTATION OF A TRANSLATOR FOR CONVERTING A MINIMALIST LANGUAGE TO VHDL 29

pISSN: 2344-2158

<Digit> → 0 | 1 | 2 … | 9

<Number> → <Digit> <Digit>*

<Expression> →
<Term> (<Operator>

<Term>)*

<Term> →

<Op_unary> <Number> |

<Number_hex> | <Variable>

| ”(” <Expression> ”)”

<Op_unary> → ”-” | ”!”

<Number_hex> → ”0x” <Digit><Digit>*

<Operator> →

”*” | ”/” | ”+” | ”-” | ”&” | ”>”

| ”>=” | ”<” | ”<=” | ”==” |

”=” | ”&&” | ”||”

<Decision> →

”if” ”(” <Expression> ”)”

<Instr_block> (”else”

<Instr_block>)*

<Instr_block> →
<Instruction> | ”{”

<Instructions> ”}”

<Repetition> →
”while” ”(” <Expression> ”)”

<Instr_block>

<Port> →
(”input” | ”output”)

<Variable> (, <Variable>)*

The abstract syntax tree is generated by

using a recursive descent parser [6] for parsing

instructions and the Shunting-yard [8] algorithm

for parsing expressions.

During the generation of the syntax tree,

the Parser also checks that all the instructions

conform to the grammar shown in Table 1.

If the syntactic structure of the code is

not valid, the Parser block throws an error that

contains information about the cause of the

syntax error and its location in the source code.

Besides checking the syntactic structure,

the Parser also performs additional checks in

order to avoid common errors.

4.3. Graph generation

The Grapher has the role to process the

abstract syntax tree generated by the Parser and

to produce an oriented graph representing the

logic of the source program.

The graph starts with a node of type

NODE_START. From this node goes out a

transition on the condition "(start == 1)", which

allows the start of graph processing. The start

node is always named s0 (state number 0). This

node is followed by other types of nodes

(NODE_EXPRESSION, NODE_IF, NODE_

WHILE), used for representing expressions,

decisions and loops.

4.4. VHDL code generation

The target code generator (i.e. the

Texter) is composed of a series of static methods

that are used for processing the finite state

automaton generated by the graph generator

block.

The main method of the code generator

is getVHDL. It receives as parameters the

previously generated graph, the data regarding

the input/output ports, as well as the variables

declared in the source program. By using these

data, it generates the final program with the aid

of a set of templates for the various parts of the

program.

The use of templates allows the

separation of the graph processing logic from the

logic that generates the final text. A sample

template looks like this:

when "{{state}}" =>
 {{expression}}
 next_s <= "{{futureState}}";

4.5. Unit testing

During the development of a software

application, the source code evolves due to

changes of the specifications, redesign or

refactorization. All of these modifications can

introduce different problems in the operation of

the application, problems that are not always

obvious during manual testing. Automated

testing has the role to discover this type of

problems and to guarantee the correct operation

of the modified program.

Unit testing verifies each program unit

separately. A unit may be a class, a method or a

sequence of method calls.

Tests were implemented using the

mocha library (from mochajs.org), which offers

the possibility to test the JavaScript code on the

server as well as in the browser. It comes with a

set of tools that allow the rapid creation and

execution of the desired tests. In order to run the

written tests, a platform that is able to interpret

and execute the JavaScript code is required. In

this paper the NodeJS platform was used for

running tests.

30 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTER SCIENCE, Vol.16, Issue 2, 2016

pISSN: 2344-2158

5. RESULTS

For testing the corectness of the VHDL

code generated by the translator, a circuit that

performs the multiplication of two 3-bit numbers

was built. The circuit has two inputs (named a

and b) of 3 bits, and an output (named rezultat)

of 6 bits. Therefore, in the program the input

ports a[2:0] and b[2:0] and the output port

rezultat[5:0] must be defined. The translator

automatically adds the inputs reset, clk and start,

as well as the output ready.

Mathematically, the multiplication of

two numbers (a x b) is a repeated summing of b

with itself a times. Starting from this idea, we

can write (by using the minimalist language

described in this paper) the following algorithm

for computing the result of multiplying the two

values applied on the circuit inputs:

// the inputs of the circuit
input a[2:0];
input b[2:0];
// the output of the circuit
output rezultat[5:0];
// the program logic
let iRez[5:0] = 0;
let iA[2:0] = a;
while (iA > 0) {
 iRez = iRez + b;
 iA = iA - 1;
}
// send computed result to the output
result = iRez;

The VHDL code generated by our application for

the above program looks like this:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity program is
port (
 -- input variables
 in_a : in std_logic_vector(2 downto
0);
 in_b : in std_logic_vector(2 downto
0);
 -- output variables
 ot_rezultat: out std_logic_vector(5
downto 0);
 clk : in std_logic;
 start : in std_logic;
 reset : in std_logic;
 ready : out std_logic

);
end program;
architecture program_a of program is
 -- signals used for current and next
states
 signal current_s, next_s :
std_logic_vector(3
 downto 0);
begin
process (clk, reset)
begin
 if (reset = '1') then
 current_s <= "0000";
 elsif (rising_edge(clk)) then
 current_s <= next_s;
 end if;
end process;
process (current_s, start)
 -- internal variables
 variable var_iRez:std_logic_vector(5
downto 0);
 variable var_iA:std_logic_vector(2
downto 0);
begin
 case current_s is
 when "0000" =>
 ready <= '0';
 if (start = '1') then
 next_s <= "0001";
 end if;
 when "0001" =>
 var_iRez(5 downto 0) :=
"000000";
 next_s <= "0010";
 when "0010" =>
 var_iA(2 downto 0) := in_a;
 next_s <= "0011";
 when "0011" =>
 if (var_iA > 0) then
 next_s <= "0100";
 else
 next_s <= "0111";
 end if;
 when "0100" =>
 var_iRez := var_iRez + in_b;
 next_s <= "0101";
 when "0101" =>
 var_iA := var_iA - "001";
 next_s <= "0110";
 when "0110" =>
 next_s <= "0011";
 when "0111" =>
 ot_rezultat <= var_iRez;
 next_s <= "1000";
 when "1000" =>
 -- final state
 ready <= '1';

Mihai-Ionut VILCU, Florin-Marian BIRLEANU

DESIGN AND IMPLEMENTATION OF A TRANSLATOR FOR CONVERTING A MINIMALIST LANGUAGE TO VHDL 31

pISSN: 2344-2158

 next_s <= "0000";
 when others =>
 next_s <= "0000";
 end case;
end process;
end program_a;

In order to verify the corectness of this

generated VHDL code, a simulation was

performed with ActiveHDL Student Edition. The

results are shown in Fig. 3. The start of the

simulation is on the top, while the end of the

simulation is shown on the bottom of the figure.

Fig. 3 The results of simulating the VHDL code generated for the multiplication circuit.

6. CONCLUSION

The paper presented a software

application that allows the description of logic

circuits by using an imperative structured

programming language. This is done by

converting the source code written in this

minimalist programming language (that allows

instructions for declaring variables and for

performing assignments, decisions and loops)

into a circuit description in the VHDL hardware

description language.

The method that was used for generating

the VHDL code is simple and didactic and it

helps to understand the relationship between

software and hardware. The main drawback of

this method is the efficiency of the generated

VHDL code. This efficiency depends on the

number of nodes of the graph generated

internally by the translator from the abstract

syntax tree corresponding to the input source

code.

7. REFERENCES

[1]. I. Kuon, R. Tessier, J. Rose, "FPGA Architecture:

Survey and Challenges," Foundations and Trends

in Electronic Design Automation, vol. 2, no. 2

(2007), pp. 135-253.

[2]. P.P. Chu, "FPGA Prototyping by VHDL

Examples. Xilinx Spartan-3 Version," John Wiley

& Sons, 2008.

[3]. W. Meeus, K. Van Beeck, T. Goedeme, J. Meel,

D. Stroobandt, "An overview of today's high level

synthesis tools," Design Automation for

Embedded Systems, vol. 16, no. 3 (2012), pp. 31-

51.

[4]. F.M. Birleanu, "A Method for Translating

Pseudocode to HDL via Finite Automata,"

32 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTER SCIENCE, Vol.16, Issue 2, 2016

pISSN: 2344-2158

University of Pitesti Scientific Bulletin. Series:

Electronics and Computer Science, vol. 14, no. 1

(2014), pp. 11-18.

[5]. F.M. Birleanu, B.A. Enache, M. Alexandru,

"First Steps Towards Designing a Compact

Language for the Description of Logic Circuits,"

COMM 2016, pp. 357-360.

[6]. K.D. Cooper, L. Torczon, "Engineering a

Compiler", 2nd ed., Elsevier, 2012.

[7]. J.E. Hopcroft, R. Motwani, J.D. Ullman,

"Introduction to Automata Theory, Languages

and Computation," 2nd ed., Addison-Wesley,

2001.

[8]. E.W. Dijkstra, "ALGOL 60 Translation: An

ALGOL 60 Translator for the X1," ALGOL

Bulletin. Supplement nr. 10, 1961.

