
ISSN – 2344 – 2166

A PROPOSED RACK-AWARE MODEL FOR HIGH-AVAILABILITY

OF HADOOP DISTRIBUTED FILE SYSTEM (HDFS) ARCHITECTURE

Timothy MOSES
Department of Computer Science, Federal University of Lafia, Nasarawa State, Nigeria

visittim@yahoo.com

Keywords NameNode, HDFS architecture, Rack_Unit NameNode, metadata management, high-

availability model, rack-aware.

Abstract: Data-driven models like Hadoop have gained tremendous popularity in big data

analytics. Though great efforts have been made through the implementation of the Hadoop

framework by decoupling of resource management infrastructure, the centralized design of

metadata management of HDFS has adversely affected Hadoop scalability and has resulted in a

performance bottleneck. A single master node called NameNode which manages the entire

namespace (all the inodes) of a file system has resulted in a single point of failure, namespace

limitation, and load balancing issues in the Hadoop cluster. This paper proposed a rack-aware

model where each rack is provided with a Rack_Unit NameNode (RU_NN) to manage namespace

of file system and heartbeat communication of DataNodes in its rack. This will reduce load on a

single NameNode and will also provide less communication overhead from all DataNodes in the

cluster to a single NameNode.

1. INTRODUCTION

A new crystal ball of the 21
st
 century that

helps put massive data together, classifying them

according to their kind or nature is referred to as

Big Data. Big data is a platform that helps in the

storage, classification and analyzing massive

volumes of data [1]. Hortonworks in [2] defined

big data as a collection of large datasets that

cannot be processed using traditional computing

techniques. These data includes black box data

(data from components of helicopter, airplanes,

and jets), social media data such as Facebook

and twitter, stock exchange data that holds

information about the "buy" and "sell" decisions

made on a share of different companies, power

grid data like information consumed by a

particular node with respect to a base station,

transport data which includes model, capacity,

distance and availability of a vehicle. These ever-

increasing data pools obviously have a profound

impact not only on hardware storage

requirements and user applications but also on

the file system design, implementation and the

actual I/O performance and scalability behaviour

of today's IT environment. To improve I/O

performance and scalability therefore, the

obvious answer is to provide a means such that

users can read/write from/to multiple disks [3].

Today's huge and complex semi-structured or

unstructured data are difficult to manage using

traditional technologies like RDBMS hence, the

introduction of HDFS and MapReduce

framework in Hadoop.

Hadoop is an open-source Apache Software

Foundation (ASF) project which is written in

Java programming language that provides cost-

effective and scalable infrastructure for

distributed and parallel processing of large

datasets across the commodity of clusters [4].

The programming paradigm was inspired by

Google File System (GFS) [16] and Google’s

MapReduce distributed computing environment.

The idea was first conceived by Dough Cutting,

an employee then with Yahoo and together with

Professor Mike Caferalla of the University of

Michigan, developed Hadoop later called Apache

Hadoop [18]. Hadoop was named after Dough

Cutting’s son toy elephant [17]. The framework

26 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN : ELECTRONICS AND COMPUTERS SCIENCE, Vol.20, Issue 1, 2020

was designed basically to provide reliable,

shared storage and analysis infrastructure to the

user community. Hadoop has two components –

the Hadoop Distributed File System (HDFS) and

the MapReduce framework [5]. The storage

portion of the framework is provided by HDFS

while the analysis functionality is presented by

MapReduce [3]. The first generation Hadoop

called Hadoop_v1 was an open source of

MapReduce [19]. It has a centralised component

called NameNode which is the file metadata

server for HDFS that stores application data [4].

With Hadoop_v1, scalability beyond 4000 nodes

was not possible with the centralized

responsibility of JobTracker/TaskTracker

architecture. To overcome this bottleneck and to

promote this programming framework so that it

carries other standard programming models and

not just the implementation of MapReduce, the

Apache Hadoop Community developed the next

generation Hadoop called YARN (Yet Another

Resource Negotiator). This newer version of

Hadoop called YARN decouples resource

management infrastructure from JobTracker in

Hadoop_v1. Hadoop YARN introduced a

centralized Resource Manager (RM) that

monitors and allocates resources. Each

application also delegates a centralized per-

application master (AM) to schedule tasks to

resource containers managed by Node Manager

(NM) on each compute node [20]. The HDFS

and its centralized metadata management remain

the same on this newer programming model [20].

The HDFS is a master/slave architecture

consisting of NameNode called master, a

secondary node called checkpoint and several

DataNodes called slaves [6]. The

major/centralized controller that handles all file

system operations is the NameNode hence; any

request to the file system (like create, delete and

read a file) must go through the NameNode.

NameNode also handles block mappings of input

files. Block creation, deletion, and replication are

managed by the DataNode upon instruction from

the NameNode [6]. A periodic heartbeat message

is always sent from the DataNodes to NameNode

(usually, default heartbeat is 3s) to be sure that

there is no loss of connectivity between the two.

Hadoop has attracted the attention of

engineers and researchers as a growing and very

efficient framework for big data analytics. The

controller in HDFS requires a single master

node, called NameNode, which manages the

entire namespace of a file system. This single

and a centralized master node can cause Single

Point of Failure (SPOF), namespace limitation

and load balancing issues in Hadoop cluster.

Though SPOF has been resolved by the

introduction of Quorum Journal Manager (QJM)

in Hadoop versions 2.1 and beyond, namespace

limitation and load balancing issues still

constitute a bottleneck for efficiency since all

access requests to file systems have to contact

the NameNode. While Hadoop 3.0 provides the

option of running more than two namenodes in a

cluster [21], only one namenode can be in an

active state at a time. Though it is obvious that

Hadoop HDFS is rack-aware [22], only a single

(active) namenode exist in the whole cluster.

This single namenode is a bottleneck for data

block replication in the cluster. Several

heartbeats communication to a single namenode

is also a challenge. This paper, therefore,

proposes a prototype rack-aware model for high-

availability of HDFS for efficient file system

operations in the Hadoop framework. Multiple

namenodes are provided in the model where each

namenode controls a rack in the cluster. The

intention is to solve the issues of heartbeats

communication and reduction in the time needed

for data block replication in Hadoop cluster. The

paper is organized into six sections. Section one

is the introduction. Section two states the

objectives of the study. While section three gives

a description of several related works proposed

to provide efficiency in HDFS, section four gives

a description of Hadoop cluster and the network.

Section five describes our proposed rack-aware

model for high-availability of HDFS in Hadoop

framework. Section five is the conclusion and

research gap in the study.

2. OBJECTIVES OF THE STUDY

The objectives of this study are;

i. To provide NameNode for each rack in the

Hadoop cluster that will handle all file system

operations for corresponding DataNodes in

the same rack.

ii. Partition entire namespace of a file system

into corresponding number of racks available

in the cluster.

iii. Ensure improved availability of NameNode

for heartbeat communication and load

Timothy MOSES

A PROPOSED RACK-AWARE MODEL FOR HIGH-AVAILABILITY HDFS ARCHITECHTURE 27

balancing with corresponding DataNodes in

its rack.

3. RELATED WORK

In the present world, every single second

holds the age of the colossal measure of

information [7]. The storage of such enormous

and valuable information is one of the most

essential assignments, and furthermore, the

viable analysis of such a gigantic measure of data

to get satisfactory outcome is significant. Such a

tremendous measure of data may prompt

utilization of an immense measure of time that

requires an efficient big data analytics

framework to process. To reduce time utilization

and increase performance therefore, efforts have

been geared towards developing a high-

availability HDFS for the Hadoop framework.

Azzedin in [8] proposed a framework which

decreases the reliance on the size of metadata on

the NameNode. The metadata for both storage

allocation and replication of data is stored in the

RAM of the NameNode. The author [8] argued

that storing the metadata of an immense measure

of data in a single NameNode brings about load

balancing issues and efficiency bottleneck.

Along these lines, the design builds up itself

appropriately on overseeing huge metadata by

selecting itself into a Chord protocol-based

architecture that interfaces with the HDFS to

provide scalability to the Hadoop framework [8].

As the framework utilizes a chord protocol, it

impacts the framework by expanding intricacy of

single HDFS NameNode architecture. Though

[8] architecture ensured that there is no over-

reliance on NameNode through chord protocol

architecture, the NameNode still serves as the

master node in HDFS hence, efficiency

bottleneck through heartbeat communication

with DataNodes in the cluster still persist.

The authors in [9] developed NCluster for

high-availability of HDFS. The architecture used

multiple active NameNodes instead of one

NameNode in the cluster [9]. To handle metadata

replication process across these active nodes,

pub/sub system was used. This approach to

providing high-availability helped NCluster

architecture in exhibiting effectiveness in the

Hadoop cluster. How DataNodes failure is

handled in NCluster however, still remains a

major concern. Kim et al., in [10] suggested a

distributed and cooperative NameNode cluster

for highly-available HDFS. The architecture

consists of several NameNodes to resolve the

issue of SPOF, namespace limitation and load

balancing problem. The framework was designed

in a way that only one primary NameNode

exists, others are backup NameNodes [10]. The

entire namespace of a file system was partitioned

into several fragments, and replicas of each

fragment dispersed among NameNodes in the

cluster. Performance bottleneck caused by a

single NameNode can then be resolved by

assigning different NameNodes to different

fragments as the primary ones [10]. Fig. 1 and 2

gives a description of namespace partitioning in

Hadoop 2.0 and [10] architecture respectively.

Fig. 1: Namespace partitioning in Hadoop 2.0 [10]

Figure 2: Namespace partitioning in [10]

Though Hadoop versions 2.0 and beyond

replicates complete namespace using shared

storage as shown in Fig. 1, the architecture in

[10] however, ensure that replicas of each

fragment are dispersed among NameNodes; with

only one of the NameNodes serving as primary

NameNode while others are backup NameNodes.

The architecture uses Zookeeper to manage the

hash table called NSTable [10]. With the entire

28 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN : ELECTRONICS AND COMPUTERS SCIENCE, Vol.20, Issue 1, 2020

namespace partitioned into several fragments and

replicas of each fragment dispersed among

NameNodes, the architecture will be able to

tolerate up to (k/2 – 1) faulty NameNodes in k

replicas. Handling of heartbeat communication

of DataNodes in the cluster by this multiple

NameNodes however, is a bottleneck since the

architecture has only one primary NameNode

with others serving as backup.

Islam in [11] proposed a hybrid design

called Triple-H that guarantees effective data

placement policies to accelerate HDFS on HPC

Clusters. The significant thought behind the

hybrid plan was the consideration of high-

performance hardware to the HDFS. The author

[11] opined that, since Hadoop architecture

keeps up the total metadata into the essential

memory of the NameNode, it will be essential if

the NameNode is supplanted with high-execution

hardware to solve issues of I/O bottlenecks [11].

The expansion of such high-execution hardware

has made the framework more optimized and

scalable. However, scaling the NameNode deep

does not change the issue of centralization as

obtained in HDFS architecture. High-

performance hardware for NameNode will still

reach a threshold limit that will downgrade

performance in the Hadoop cluster. Stamatakis et

al., in [12] proposed a general-purpose

architecture for replicated metadata services in

distributed file systems. The motivation for the

work came from the disadvantages of Parallel

Virtual File System (PVFS) and HDFS

architectures. The authors in [12] argued that

PVFS provides stateless replication of data

blocks of a file on defined metadata servers in a

shared network accessible storage, which,

however, suffers a single point of failure. HDFS,

which provides quorum based replication, puts a

limit to store metadata on main memory due to

its checkpoint and roll forward solution [12].

This limitation prompted the development of the

Replicated Metadata Service (RMS). RMS uses a

transactional key-value data store to provide

sufficient support for the type of operations in

file system metadata and also provides better

scalability in a distributed setting. The system

was implemented on HDFS, calling the resulting

system HDFS-RMS [12]. HDFS-RMS still

remains a single master node for file system

operations. The architecture did not resolve the

issue of several heartbeats protocol coming from

all DataNodes in the Hadoop cluster.

 A high-availability HDFS architecture

based on threshold limit and saturation limit of

the NameNode was proposed by [7]. The

architecture agreed with having multiple

NameNodes in a cluster. The architecture was

designed in a way that all NameNodes have the

same number of DataNodes. The number of

DataNodes connected to a NameNode is

dependent on the threshold limit and saturation

limit of the NameNode [7]. The threshold limit is

regarded as the maximum number of DataNodes

that a NameNode can connect to for optimal

performance and load balancing. The saturation

limit has to do with additional load (DataNodes)

a NameNode can connect to once all

NameNodes have reached their threshold limit

[7]. Fig. 3 describes this architecture.

Fig. 3: Double layered Namenode Management [7]

 The architecture is such that all

DataNodes are connected to the NameNode with

a super NameNode connected to all other

NameNodes (Fig. 3). Once a DataNode gets

disconnected from a particular NameNode,

another DataNode can be connected as shown in

Fig. 4.

Fig. 4: Interpretation of connectivity in [7]

Timothy MOSES

A PROPOSED RACK-AWARE MODEL FOR HIGH-AVAILABILITY HDFS ARCHITECHTURE 29

The DataNodes and NameNodes are

represented by D and N respectively, with each

having a unique identifier. If for instance, D1 gets

disconnected, and D7 arrives, then D7 will be

connected to N1 except if N1 has reached its

threshold limit. If D1 arrives later but all

NameNodes have reached their threshold limits,

then D1 can be accepted for connectivity by N1.

Though this architecture is efficient to solve

issues of load balancing and namespace

limitation, NameNodes in the cluster are not

rack-aware hence, reconnecting DataNodes may

lead to conflict in the Hadoop cluster. Load

balancing between NameNodes in HDFS

architecture was presented by [13]. The

architecture also used multiple NameNodes to

resolve the issue of SPOF. The NameNodes are

connected to each other with their respective I/O

operations. Anytime a client sends a request to a

NameNode, the NameNode checks the entry of

the request in the namespace. Once an entry

exists, the client is notified and appropriate

DataNodes contacted. If however, there is no

entry in the namespace, the client is contacted.

The architecture is similar to [7] and [10]. No

provision for heartbeat communication between

NameNodes and DataNodes. Load balancing

issues may occur because no primary/super

NameNodes is available in the architecture.

Fig. 5: HDFS namenode high availability

architecture [23].

Bakshi in [14] and Datafliar in [23]

proposed another design for keeping up metadata

adequately and productively by incorporating the

framework with two balanced nodes and

Quorum-based third party node [14], [23]. As the

NameNode in Hadoop is helpless to Single-

point-Failure, [14] and [23] proposed two even

NameNodes where one of the nodes is in a

functioning state and the other one in the passive

state as shown in Fig. 5. The active node stays as

the essential NameNode when it is performing a

task. If by any chance the active node fails, it is

replaced by the passive node [14], [23]. Here the

simultaneousness between the substances of the

NameNode is kept up by the Quorum Journal

Nodes (QJN). The QJM holds the total edit logs

of the Namenode, and the passive node is

capable of reading all the edit logs and can make

changes to its individual namespace from the

QJM. QJM in this architecture provides for

simple concurrency control in keeping up the

metadata over the Namenodes and furthermore

avoids the single-point-failure issue. The

architecture solely resolve the issue of SPOF in

the Hadoop cluster. This development has been

implemented in Hadoop versions 2.1 and

beyond. Balancing load on several DataNodes

across the Hadoop cluster with a single active

NameNode will still lead to a performance

bottleneck.

30 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN : ELECTRONICS AND COMPUTERS SCIENCE, Vol.20, Issue 1, 2020

4. DESCRIPTION OF TYPICAL

HADOOP CLUSTER AND THE

NETWORK LAYOUT

 The three major layers of machine roles in

any Hadoop deployment are the client machines,

master nodes and the slave nodes [15]. The

master nodes are responsible for overseeing two

key functional processes that make up the

Hadoop framework; HDFS that stores massive

data and MapReduce responsible for running

parallel computation [15]. The slave node layer

makes up the vast majority of workstations that

store and also process data. Client machine has

Hadoop installed with all the cluster settings so

as to enable for loading of data into the cluster,

submission of MapReduce/other applications

describing how the applications should retrieve

and process data and how it should view results

once a task is completed. Fig. 6 shows typical

server roles with these three major layers.

Fig. 6: Hadoop Server Roles [15]

Typical architecture of the Hadoop cluster

has rack servers populated in racks connected to

a top of a rack switch [15]. The rack switch has

uplinks which are also connected to another tier

of switches, which connects all other racks with

uniform bandwidth to form a cluster (see Fig. 7).

 Hadoop has the concept of "rack

awareness". There are two reasons for setting

rack awareness when storing data in HDFS; data

loss prevention and network performance [15].

Since data are replicated to avoid losing all

copies of data, it is expected that while doing

this, all data are not replicated at different nodes

on the same local rack. If this happened and the

rack experiences a failure such as a switch or

power failure, then that data will be lost. It is also

believed that two machines in the same rack have

more bandwidth and lower latency between each

other than two machines in two separate racks.

This is true because rack switch uplink

bandwidth is usually less than its downlink

bandwidth. Also, in-rack latency is lower than

cross-rack latency. Hence, network performance

can be enhanced if the framework is rack aware.

The NameNode of the HDFS in a cluster holds

all the file system metadata for the cluster. It

oversees the healthy state of each data node in

the cluster and coordinates access to them [6]. It

keeps track of the cluster storage capacity

making sure that each block of data meets its

minimum defined replica policy. Name Node is

the central controller of HDFS. It does not hold

cluster data itself but knows what blocks make

up a file and where these blocks are located in

the cluster [15].

Figure 7: Hadoop Cluster [15]

Anytime the client wants to read data, the

NameNode points the client to the DataNodes

they need to talk to. DataNodes send heartbeats

to NameNode at an interval of 3seconds through

a TCP handshake using the same port number

that defines the NameNode daemon. Every tenth

heartbeat of DataNode to NameNode is a block

report that tells NameNode about the blocks it

has [15]. This report makes NameNode build its

metadata and ensure that three copies of each

block of data exist on different nodes in different

racks [15]. NameNode forms a crucial

component of HDFS without which the client

will be unable to read/write to HDFS and it will

be difficult to schedule map-reduce jobs or other

applications on the Hadoop framework. Anytime

heartbeat communication stops between

Timothy MOSES

A PROPOSED RACK-AWARE MODEL FOR HIGH-AVAILABILITY HDFS ARCHITECHTURE 31

NameNode and DataNode, it is presumed that

such DataNode is dead and any data its holding

gone as well. Previous block reports received

from the said DataNode will help the NameNode

to know which copies of blocks died along with

the node. Using rack aware policy, the

NameNode will re-replicate those blocks on

other DataNodes. The limitation with this,

however, is when an entire rack of servers falls

off the network due to rack switch failure or

power failure. It then means that the NameNode

will instruct the remaining nodes in the cluster to

re-replicate all the data blocks lost in the rack.

This process may mean that hundreds of

terabytes of data will need to begin traversing the

network.

 To guard against failure of NameNode,

Hadoop has a sever called the Secondary

NameNode. There is a common misconception

however about the responsibility of Secondary

NameNode in Hadoop. Many think that its role is

to provide availability backup for NameNode but

it is not the case. The Secondary NameNode

occasionally connects to the NameNode (by

default, every one hour) to fetch a copy of

NameNode in-memory metadata and files used

to store metadata, which sometimes both

daemons may be out of sync.

Fig. 8: Proposed rack-aware model for high-

availability HDFS architecture

If perhaps the NameNode dies, the copy retained

by Secondary NameNode can be used to recover

the NameNode but may not be the exact copy of

what the NameNode holds before failure.

However, Quorum Journal Manager has been

provided in Hadoop 2.0 and beyond to help

guard against SPOF provided both the

NameNode and Secondary NameNode are in

sync. The issue of heartbeat communication and

balancing of loads still persist. Disconnection of

NameNode from DataNodes due to rack switch

failure or power failure is also a bottleneck since

this will mean, Namenode replicating all data

blocks of whole DataNodes in the affected rack

to other DataNodes in another rack. This issues

are what this proposed system intends to solve.

5. PROPOSED RACK-AWARE

MODEL FOR HDFS

ARCHITECTURE

This work intends to solve the problem of high-

availability of NameNode in the existing HDFS

architecture by allowing two NameNodes in the

upper layer of the proposed architecture as

shown in Fig. 8. Just as it is obtained in the

existing system [14][23], one of the two

NameNodes will be active while the second will

be passive.

32 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN : ELECTRONICS AND COMPUTERS SCIENCE, Vol.20, Issue 1, 2020

 For high-availability, Zookeeper service;

as available in the existing architecture will also

be used. The Zookeeper has failover controllers

for both active and standby NameNodes. To

ensure that the two NameNodes called Super

NameNodes are in sync, a shared storage device

is also provided. Active NameNode logs record

of modification done in its namespace is

transferred to EditLog in the shared storage. The

standby NameNode reads EditLogs in shared

storage and applies it to its namespace.

If active NameNode fails, the Zookeeper does

the following:

i. The Zookeeper controller for active

NameNode fences the node using a technique

called “shoot the other node in the head”

(STONITH). This is a special technique in

HDFS architecture that forcibly power down

the NameNode machine.

ii. The Zookeeper controller of the standby

NameNode opens a connection for it to

become active.

iii. The standby NameNode updates its metadata

information using the EditLogs in the shared

storage.

iv. The standby NameNode resumes as active

NameNode until the latter recovers from

failure.

 The novel approach in this architecture is

the introduction of NameNodes in each rack

called Rack Unit NameNode (RU_NN). Each of

RU_NN will be responsible for monitoring the

health status of DataNodes in its rack. A

heartbeat communication exists between the

active NameNode in the upper layer of the

architecture and each RU_NN only to monitor

the health status of the RU_NN not the entire

DataNodes in the cluster.

 This development will help reduce

communication overhead from all DataNodes to

a single NameNode. Though heartbeat

communication also exists between RU_NN and

its corresponding DataNodes in the rack, the

communication mode is in-rack. In-rack

communication latency is always lower than

cross-rack latency since uplink bandwidth is

usually less than downlink bandwidth.

 Each RU_NN log records of modification

done in its namespace are forwarded to the active

NameNode which in turn updates the shared

storage. RU_NN also reports failed DataNodes

in its rack. This will enable the active NameNode

in the upper layer of the architecture to have a

global view of active DataNodes in the cluster.

In the case of rack failure due to either switch or

power failure, active NameNode need not

replicate all data blocks in the failed rack.

Rather, data blocks available in other racks are

used until such rack recovers from failure. It is

however almost difficult to have rack failure like

it is with DataNode failures.

5.1 Major distinction between the

prototype model and existing models

Table 1.1 gives a summary of the

architectural design of existing HDFS namenode

high-availability models and the proposed

prototype model.

Table 1.1 Distinction of the prototype model from exiting models

Author Implementation details

Active

NameNode(s)
Distinction from prototype model

Single Multiple

[7]

Multiple NNs with each having the same

number of datanodes are connected to a

super NN for effective load balancing

 √

Recovered DataNodes are recomected to

any available NN (base on threshold lmit

of NNs). This will be a bottleneck to rack-

aware policy in Hadoop cluster

[8]

A chord protocol-based achitecture that

interface with HDFS to provide scalability

for Hadoop cluster
√

Single active NN will can lead to

efficiency bottleneck

Timothy MOSES

A PROPOSED RACK-AWARE MODEL FOR HIGH-AVAILABILITY HDFS ARCHITECHTURE 33

[9]

Designed to provide multiple active NN

instead of one NN to handle metadata

replication process across the active NN

 √
How Ncluster handles datanode failure in

the cluster still remains a major concern.

[10]

The architecture provides a distributed and

cooperative NN cluster for highly-available

HDFS. It has one primary NN with

multiple NNs serving as backup.

 √
Handling heartbeats communication of

datanodes by one primary NN is a concern

since other NNs only serve as backup.

[11]

A hybrid design that guarantees effective

data placement to accelerate HDFS on

HPC cluster. The design ensures that the

NN is supplanted with high-execution

hardware to solve issues of I/O bottleneck

√
Scaling the NN deep does not change the

issue of centralization as obtained in

existing models.

[12]

Developed HDFS-RMS to provide

sufficient support for the type of operations

in file system metadata.
√

Still remains a single mater node for file

system operations. This may lead to

performance bottleneck.

[13]

The design ued load balancing technique

for data placement among multiple NNs in

Hadoop cluster
 √

Heartbeat communication between NN and

datanotes is still a major concern.

[14][23]

Same architectural design with Hadoop 3.0

and beyond. The design has an active and

standby NN with several Quorum Journal

Nodes to provide edit logs which is shared

between these two NNs.

√

Because only a single namenode is active

at a time, several heartbeats to this single

(active) namenode will still lead to load

balancing and datablock replication

bottleneck

Prototype

model

Provides multiple NNs where each rack is

provided with one NN called RU_NN to

manage namespace file system and

heartbeat communication of datanodes in

its rack.

 √

Since each NN handles namespace file

system, heartbeat communication and

health status of each datanodes in its rack,

communication overhead is reduced.

Performane bottleneck associated with I/O

operation in the cluster is also reduced.

6. CONCLUSIONS

 The proposed architecture is intended to

provide continuous replication maintenance

through active and rack-unit NameNodes, end-

to-end and periodic check of super NameNodes,

RU_NN, and DataNodes in the cluster. Heartbeat

communication between several DataNodes to a

single NameNode in the existing system is

resolved by the provision of RU_NN to oversee

the health status of DataNodes in their respective

racks. This will reduce communication overhead

and job delays caused by a single NameNode in

the existing HDFS architecture. Namespace

limitation is resolved through shared storage, and

load balancing issue is taking care of through

global view of all active DataNodes in the

cluster. SPOF is resolved by the Zookeeper

failover controller. This proposed architecture,

promises to resolve the performance bottleneck

in the existing HDFS architecture.

7. REFERENCES

[1]. Camille, R. “Big Data open platforms”. Project

final report for Department of Information and

Systems Engineering, Polytechnic Institute of

Coimbra, 2015. Accessed 24.06.2019:

https://slidex.tips/download/big-data-open-

platforms

[2]. Hortonworks, “Apache Hadoop YARN”, 2016.

Accessed 18.10.2019:

https://hortonworks.com/apache/yarn

[3]. Dominique, A. H. “Hadoop design, architecture

and MapReduce performance”. DH

Technologies, 2015. Accessed 10.03.2019:

www.dhtusa.com

[4]. Shvachko, K.; Kuang, H.; Radia, S. and

Chansler, R. “The hadoop distributed file

system”. 2010 IEEE 26th symposium on Mass

Storage Systems and Technologies (MSST),

Washington D. C., 2010, USA: IEEE Computer

Society.

[5]. Nagina, D. and Sunita, D. “Scheduling algorithm

in big data: A Survey". International Journal of

Engineering and Computer Science, 5(8),

17737-17743, 2016.

https://slidex.tips/download/big-data-open-platforms
https://slidex.tips/download/big-data-open-platforms
https://hortonworks.com/apache/yarn
http://www.dhtusa.com/

34 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN : ELECTRONICS AND COMPUTERS SCIENCE, Vol.20, Issue 1, 2020

[6]. Ibrahim, A. H. T.; Nor, B. A.; Abdullah, G.;

Ibrar, Y.; Feng, X. and Samee, U. K.

“MapReduce”. Review and Challenges. Springer

Journal, 109(1), 389-421, 2016.

[7]. Chakraborty, S.; Barua, K.; Pandey, M. and

Rautaray, S. “Architecture based on threshold

limit and saturation limit of the NameNode”. I.

J. Information Engineering and Electronic

Business, 6, 27-34, 2017.

[8]. Azzedin, F. “Towards a scalable HDFS

architecture”. International Conference on

Collaboration Technologies and Systems (CTS),

IEEE, 2013.

[9]. Wang, Z. and Wang, D. “NCluster: Using

multiple active NameNodes to achieve high

availability for HDFS”. 10
th

 International

Conference on High Performance Computing

and Communication, IEEE, 2013.

[10]. Kim, Y.; Araragi, T.; Nakamura, J. and

Masuzawa, T. “A Distributed NameNode

Cluster for a Highly-Available Hadoop

Distributed File System”. 33rd International

Symposium on Reliable Distributed Systems

(SRDS), IEEE, 2015.

[11]. Islam, N. S. “Triple-H: a hybrid approach to

accelerate HDFS on HPC clusters with

heterogeneous storage architecture”. 15
th

International Symposium on Cluster, Cloud and

Grid Computing (CCGrid), IEEE/ACM China,

2015.

[12]. Stamatakis, D.; Tsikoudis, N.; Micheli, E. and

Magoutis, K. “A General-Purpose Architecture

for Replicated Metadata Services in Distributed

File Systems”. Transactions on Parallel and

Distributed Systems, IEEE, 2017.

[13]. Jakkal, M.; Goli, S.; Dudam, A.; Nilgar, P. and

Khan, A. “Performing load balancing between

NameNodes in HDFS”. International Research

Journal of Engineering and Technology, 6(3),

1838-1840, 2019.

[14]. Bakshi, A. “How to set up Hadoop cluster with

HDFS high-availability”, 2019. Accessed

10.02.2020: https://www.edureka.co/blog/how-

to-set-up-hadoop-cluster-with-hdfs-high-

availability/

[15]. Brad, H. “Understanding Hadoop clusters and

the network”, 2011. Accessed 23.12.2019:

http://bradhedlund.com/2011/09/10/understandin

g-hadoop-clusters-and-the-network/

[16]. Ghemawat, S.; Gobioff, H. and Leung, A. T.

“The Google file system”. Paper presented at

the ACM SIGOPS operating systems review,

New York City, 2003, NY: ACM.

[17]. White, T. “Hadoop: The definitive guide”,

O’Reilly Media, Sebastopol, CA, 2009.

[18]. Shouvik, B. and Daniel, A. M. “The anatomy of

MapReduce jobs, scheduling and performance

challenges”. Proceedings of the 2013 conference

of the Computer Measurement Group: Semantic

Scholar, San Diego, CA, 2013.

[19]. Bialecki, A.; Cafarella, M.; Cutting, D. and

O’Malley, O. “Hadoop: A framework for

running applications on large clusters built of

commodity hardware”, 2005. Accessed

06.06.2019: http://lucene.apache.org/hadoop/

[20]. Wang, K. “Scalable Resource Management

System Software for Extreme-Scale Distributed

Systems”, PhD Dissertation, 2015. Accessed

16.07.2019:

http://datasys.cs.iit.edu/publications/2015_IIT_P

hD-thesis_Ke-Wang.pdf

[21]. Apache Hadoop, “HDFS high availability using

the Quorum Journal Manager”, accessed

15.07.2020:

https://hadoop.apache.org/docs/r3.0.0/hadoop-

project-dist/hadoop-

hdfs/HDFSHighAvailabilityWithQJM.html

[22]. Alapati, S. R. “Expert Hadoop Administration:

Managing, tuning and securing Spark, YARN,

and HDFS”, Pearson Education Inc, USA, 2017.

[23]. Datafliar, “NameNode high availability in

Hadoop HDFS”, accessed 15.07.2020:

https://data-flair.training/blogs/hadoop-hdfs-

namenode-high-availability/

https://www.edureka.co/blog/how-to-set-up-hadoop-cluster-with-hdfs-high-availability/
https://www.edureka.co/blog/how-to-set-up-hadoop-cluster-with-hdfs-high-availability/
https://www.edureka.co/blog/how-to-set-up-hadoop-cluster-with-hdfs-high-availability/
http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/
http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/
http://lucene.apache.org/hadoop/
http://datasys.cs.iit.edu/publications/2015_IIT_PhD-thesis_Ke-Wang.pdf
http://datasys.cs.iit.edu/publications/2015_IIT_PhD-thesis_Ke-Wang.pdf
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
https://data-flair.training/blogs/hadoop-hdfs-namenode-high-availability/
https://data-flair.training/blogs/hadoop-hdfs-namenode-high-availability/

