

ISSN – 1453 – 1119

COMPARATIVE EXECUTION TIME ANALYSIS FOR BINARY, JUMP,
AND INTERPOLATION SEARCH ALGORITHMS IN OBJECT

ORIENTED LANGUAGES

ISOLA Esther O.1, OGUNDOYIN Ibrahim K.2, OMOTOSHO Lawrence O.3, ADIGUN
Adepeju A.4

OSUN STATE UNIVERSITY, OSOGBO, OSUN STATE

1esther.isola@uniosun.edu.ng, 2ibraheem.ogundoyin@uniosun.edu.ng,
3lawrence.omotosho@uniosun.edu.ng, 4adigunaa@uniosun.edu.ng

Keywords: Time, searching algorithm, Execution time, Comparative Analysis, object-oriented languages

Abstract: In computer, execution time is critical, and knowing which algorithm and programming language
will perform better, among other things will save programmers time and effort. The purpose of this work is
to compare three searching algorithms: Binary, Jump, and Interpolation, which are implemented in three
object-oriented programming languages: C++, Java, and Python using execution time. Data size,
algorithm style, and programming languages were used to compare the execution times of these searching
methods. A time stamp was utilized to determine the search algorithm's execution time. The results
demonstrate that among the programming languages tested, C++ is faster than Java and Python in terms
of execution. Interpolation search is also the algorithm with the shortest execution time for vast amounts
of data, followed by Binary search and the Jump search method. It was discovered that the size of the data
and the programming language employed have an impact on the execution time. As a result, this paper
offers guidance on selecting a search algorithm and the type of programming language to be used. In the
current age of explosive increase in the use of searching for data or information on a device, this is done
in order to minimize the execution time of a searching algorithm.

1. INTRODUCTION

The most basic requirement for any computing
application is information retrieval, which
necessitates search operations on vast databases
implemented by diverse data structures. A key
feature of the computing industry is finding an
element from a list. For searching an element, a
variety of algorithms have been developed,
including linear search, binary search, jump
search, and interpolation search algorithms [1].
Green computing, which focuses on developing
energy and power efficient devices, using non-
toxic materials, and minimizing e-waste in such
design, has received a lot of attention recently. As
a result, the hardware part of green computing and
green IT has received more attention than the
software aspect, despite the fact that green
computing involves the study and practice of
optimally employing all computing resources. As

a result, determining and enhancing the efficiency
of any algorithm requires a thorough
understanding of its execution time and energy
usage/consumption. Many of the computer's tasks
are likely to involve search activities at some point
while using the system. As a result, it's important
to understand which search techniques should and
shouldn't be utilized in data processing to reduce
the impact of their flaws on the final product [2].
 The longer an algorithm takes to execute, the
more energy it consumes, which has a direct
impact on the environment. The elements that
affect the execution time of searching algorithms
are examined in this work, and the findings are
compared and contrasted. Binary, jump, and
interpolation algorithms were used in the search,
and they were implemented in C++, Java, and
Python computer languages.

40 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE, Vol.21, Issue 2, 2021

2. RELATED WORKS

[3] did a comparative study to compare the
performance of three algorithms in terms of
execution time: comb, cocktail, and count sorting
algorithms. On the same platform, Java
programming was utilized to implement the
algorithms that used numeric data. The cocktail
method was discovered to have the quickest
execution time of the three algorithms, while
counting sort is in second place. Furthermore, in
terms of execution time, Comb is ranked lowest.
Different sorting algorithms were utilized in the
study, but only Java was used to compare them,
and the energy usage of the methods was not taken
into account. [4] used the C programming
language to conduct experiments to see how
different sorting algorithms affect energy
consumption. It was revealed that time and energy
consumption had an impact on the efficiency of
these sorting algorithms, with rapid sort, merge
sort, and shell sort being in the same time and
energy consumption range, followed by insertion
and selection sort which is far better than Bubble
sort. The implementation, however, is limited to
the C programming language and a non-varying
small data size of 10,000.
[5] used execution time to compare three sorting
algorithms: quick, merge, and insertion sort,
which were implemented in three computer
languages (C++, Java, and Python). The three
sorting algorithms were compared in terms of
execution time based on programming language,
data size, and method of implementation. Their
findings revealed that data size, programming
language, and implementation method style are all
elements that influence software execution time,
with the way software is written and the
programming language used to be two of the most
important predictors of software execution time
[6][7]. This is an essential point, but it does not
address the linear search's efficiency.

2.1 Search algorithms
Any algorithm that solves the search problem,
namely retrieving information contained within
some data structure or calculated in the search
space of a problem domain, with discrete or
continuous values, is referred to as a search
algorithm [8]. A search algorithm is a set of
formulas and commands that are used to solve
problems and provide possible answers to

problems that people are faced with, whereas
searching is the universal way of addressing
problems in AI and the foundation on which
search engines are created. Binary, Jump, and
Interpolation search algorithms are some of the
algorithms that will be examined in this study.

2.2. Binary Search
The Binary Search algorithm is used on a big
sorted array or list. Its O(log n) time complexity
makes it extremely quick when compared to other
searching methods [9]. The array or list of
elements must be sorted in order for the binary
search method to work. The procedure is as
follows:
1. Pick a value from the (sorted) array in the
middle.
2. If the value matches what we're looking for,
we're done.
3. If the value is smaller than what we're looking
for, go back to step one with the left subarray.
4. Alternatively, if the value is bigger than what
we're looking for, go back to step one with the
correct subarray.

2.3. Interpolation Search
The binary search is essentially improved by the
interpolation search. With each step, the algorithm
calculates where in the remaining search space the
target element might be based on the value of the
limits compared to the target element, similar to
how one might search a telephone book for a
name. If the elements are evenly distributed, the
time complexity is O(log (log n)). In worst cases
it can take up to O(n).

2.4. Jump Search
The Jump Search Approach is a new algorithm for
finding a specific element in a sorted array [10].
When compared to a linear search algorithm, the
basic principle behind this searching strategy is to
search a smaller number of elements (which scans
every element in the array to check if it matches
with the element being searched or not). This can
be accomplished by skipping a set number of
array elements, or jumping ahead by fixed number
of steps in every iteration.

3. MATERIALS AND METHOD

Three different but related searching algorithms
namely Binary, Jump, and Interpolation search,

ISOLA Esther O., OGUNDOYIN Ibraheem K., OMOTOSHO Lawrence O., ADIGUN Adepeju A.
COMPARATIVE EXECUTION TIME ANALYSIS FOR BINARY, JUMP, AND INTERPOLATION SEARCH ALGORITHMS IN
OBJECT ORIENTED LANGUAGES 41

were implemented in three different object-
oriented programming languages. The languages
used are C++, Java, and Python, in order to
determine which of the search algorithms execute
faster and which programming language
performed better for implementing each of the
algorithms. The algorithms were chosen for their
resemblance to those found in a sorted list or
array.

3.1. Implementation of Selected Searching
Algorithm
The Searching Algorithms were implemented on
a computer system utilizing the NetBeans
development IDE and Python 3.7, which is loaded
on a Lenovo Ideapad 110 laptop with Windows
10, Intel(R) Core (TM) i3-4005U CPU @
1.70GHz, Radeon(tm) HD Graphics, 1.70GHz
(processing speed), and 4GB of RAM space.

3.2. Binary Search Algorithm
Step 1: Input an array A of n elements and ―data
to be search
Step 2: LB = 0, UB = n; mid = int ((LB+UB)/ 2)
Step 3: Repeat step 4 and 5 while (LB <= UB) and
(A[mid]! = data)
Step 4: If (data < A[mid]) UB = mid–1
Step 5: Else LB = mid + 1
Step 6: Mid = int ((LB + UB)/ 2)
Step 7: If (A[mid] == data) Display ―the data
found.
Step 8: Else Display ―the data is not foundۅ
Step 9: Exit

3.3. Interpolation Search Algorithm
Following are the steps of implementation that we
will be following:
Step 1: Input a sorted array of n elements and the
key to be searched
Step 2: Initialize low = 0 and high = n – 1
Step 3: Repeat the steps 4 through 7 until if (low
< high)
Step 4: Mid = low + (high – low) × ((key –
A[low]) / (A[high] – A[low]))
Step 5: If(key < A[mid]) high = mid–1
Step 6: Elseif (key > A[mid]) low = mid + 1
Step 7: ElseDisplay ― The key is not in the arrayۅ
Step 8: STOP

3.4. Jump Search Algorithm

Steps for Jump Search Algorithms:
Step 1: Set i=0 and m = √n.

Step 2: Compare A[i] with item. If A[i] != item
and A[i] < item, then jump to the next block. Also,
do the following:
1. Set i = m
2. Increment m by √n
Step 3: Repeat the step 2 till m < n-1
Step 4: If A[i] > item, then move to the beginning
of the current block and perform linear search.
 1. Set x = i
 2. Compare A[x] with item. If A[x]== item,
then print x as the valid location else set x++
 Repeat Step 4.1 and 4.2 till x < m
Step 5: Exit

3.5. Measurements

3.5.1 Time Stamp
A time stamp was inserted exactly above the
called search function, and another time stamp
was placed directly below the called sorting
function. This is done to ensure that the execution
time recorded is only for the purpose of capturing
execution time. The execution time was
calculated by subtracting the start and end times.

3.5.2 Execution Time
The time it takes for an algorithm to execute is
called the Execution Time T. The search time will
be calculated using a system clock imported from
the programming language's libraries.
 Execution The time was calculated by subtracting
the start and end times. The times were recorded
in seconds. The algorithm for execution time is
given below:
Start_Time: Invoke _System_clock
Call_searchingAlgorithm_class/method
End_Time <----Invoke_System_Clock
Execution_Time = End_Time - Start_Time

4. RESULTS AND DISCUSSION

Table 1 shows the execution time and data size for
the Binary search, Jump search, and Interpolation
search algorithms implemented in C++, Java, and
Python programming languages. Figures 1 to 6
show the graph for comparing the algorithms,
which shows the data size and execution time.
Table 1. shows that when the data size is 100 and
500, jump search algorithm has the highest value
of 27.25 and 32.5 respectively for the three
selected programming languages. The execution

42 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE, Vol.21, Issue 2, 2021

time for the same method differs depending on the
programming language. Because programming
languages differ in terms of design and
specifications. The execution time of the specified
Python algorithms is much longer than that of the
Java and C++ algorithms. It was discovered that
the programming language used for any algorithm
will have effect on the execution time.
Fig. 1 to 6 provide a comparison graph of
execution time and data size for the Binary search,
Jump search, and Interpolation search algorithms
implemented in the C++, Java, and Python
programming languages. The graphs depict the

data size and average execution time of Binary,
Jump, and Interpolation Search Algorithms
implemented in C++, Java, and Python,
respectively. Execution time increases as the data
size grows, regardless of the programming
language employed. This is shown in the graph's
trend. Fig. 1 to 3 showed the trend that algorithm
implemented in C++ programming language has
the least execution time. Fig 4 to 6 also showed
that out of the three-search algorithm considered,
interpolation algorithm has the least execution
time.

Table 1: Comparison of Average Execution Time of Binary, Jump, and Interpolation Search Algorithms
Implementations in JAVA, C++ and Python.

DATA

Size

(‘000)

Java C++ Python

Binary Jump Inter-

polation

Binary Jump Inter-

polation

Binary Jump Inter-

polation

100 15.75 27.25 15.5 12.75 20.25 12.50 40.75 46.25 46.25

200 19.25 31.50 19.25 16.25 25.50 16.25 45.25 55.00 47.00

300 23.25 31.75 19.50 20.25 25.75 17.50 52.00 58.50 47.25

400 27.5 32.25 23.50 23.50 28.25 20.50 55.25 59.75 48.75

500 34.75 32.50 24.75 30.55 30.50 20.75 57.25 60.25 54.25

Figure 1: Comparison of Average Execution Time of Binary Search Algorithm Implementation in C++, Java and
Python

0

10

20

30

40

50

60

70

100 200 300 400 500

AV
ER

AG
E

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

DATA SIZE

Java C++ Python

ISOLA Esther O., OGUNDOYIN Ibraheem K., OMOTOSHO Lawrence O., ADIGUN Adepeju A.
COMPARATIVE EXECUTION TIME ANALYSIS FOR BINARY, JUMP, AND INTERPOLATION SEARCH ALGORITHMS IN
OBJECT ORIENTED LANGUAGES 43

Figure 2: Comparison of Average Execution Time of Jump Search
 Algorithm Implementations in C++, Java and Python

Figure 3: Comparison of Average Execution Time of Interpolation Search Algorithm Implementations in C++,
Java and Python

0

10

20

30

40

50

60

70

100 200 300 400 500

AV
ER

AG
E

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

DATA SIZE

Java C++ Python

0

10

20

30

40

50

60

100 200 300 400 500

AV
ER

AG
E

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

DATA SIZEE

Java C++ Python

44 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE, Vol.21, Issue 2, 2021

Fig. 4: Comparison of Average Execution Time of Binary, Jump, and Interpolation Search Algorithms
Implementations in JAVA.

Fig. 5: Comparison of Average Execution Time of Binary, Jump, and Interpolation Search Algorithms
Implementations in C++.

0

5

10

15

20

25

30

35

40

100 200 300 400 500

AV
ER

AG
E

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

DATA SIZE

Binary Jump Interpolation

0

5

10

15

20

25

30

35

100 200 300 400 500

AV
ER

AG
E

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

DATA SIZE

Binary Jump Interpolation

ISOLA Esther O., OGUNDOYIN Ibraheem K., OMOTOSHO Lawrence O., ADIGUN Adepeju A.
COMPARATIVE EXECUTION TIME ANALYSIS FOR BINARY, JUMP, AND INTERPOLATION SEARCH ALGORITHMS IN
OBJECT ORIENTED LANGUAGES 45

Figure 6: Comparison of Average Execution Time of Binary, Jump and Interpolation Search Algorithms
Implementations in Python.

5. CONCLUSIONS

The work focused on execution time of some
selected search algorithm implemented in C++,
Java and Python programming language.
This study revealed that software execution time
is influenced by some factors such as data size and
programming language used.
It can be noted that the same searching algorithm
has different execution tine with varying data
sizes when implemented in different
programming language.
The higher the data size the higher the time taken
for searching.
Therefore, this gives developers knowledge on
time efficiency in software leading to choosing
codes over others based on their time
performance.

6. REFERENCES

[1] Balogun G. B.,” A Comparative Analysis of the

Efficiencies of Binary and Linear Search
Algorithms,” African Journal of Computing & ICT,
13(1), 39 – 51, 2020.

[2] Balogun, G. B., “A Modified Linear Search
Algorithm, African Journal of Computing & ICT”,
12 (2) 43 54. 2019

[3] Elkahlout, A., and Maghari, Y. A., “A comparative
Study of Sorting Algorithms Comb, Cocktail and
Counting Sorting”, International Research Journal
of Engineering and Technology (IRJET) 4(1) 1 -10.
2017.

[4] Deepthi T; and Birunda A. M. J., “Time and Energy
Efficiency: A Comparative Study of Sorting
Algorithms Implemented in C”, International
Conference on Advancements in Computing
Technologies (IJFRCSCE) 4(2)25–27. 2018.

[5] Ayodele O. S., and Oluwade B., ” A Comparative
Analysis of Quick, Merge and Insertion Sort
Algorithms using Three Programming Languages
I: Execution Time Analysis‟, African Journal of
Management Information System, 1(1) 1-18. 2019.

[6] Parimal Mridha, Binoy Kumar Datta., “An
Algorithm for Analysis the Time Complexity for
Iterated Local Search (ILS)”, Journal of Research
in Applied Mathematics, 7(6), 52 – 54. 2021.

[7] Isola E. O., Ogundoyin I. K., Akanbi C. O. and
Adebayo O. Y., “The correlation among cognitive
complexity metrics in Algorithm Analysis”,
Uniosun Journal of Engineering and Environmental
Sciences 3(1), 2021.

[8] Liu, J. P., Yu, C. U., and Tsang, P. W., “Enhanced
direct binary search algorithm for binary computer
generated Fresnel holograms”, Applied optics,
58(14). 2019.

[9] Kehinde A. Sotonwa , Monsurat O. Balogun, Esther
O. Isola, Stephen O. Olabiyisi, Elijah O. Omidiora
and Christopher A. Oyeleye, “Object Oriented

0

10

20

30

40

50

60

70

100 200 300 400 500

AV
ER

AG
E

EX
EC

U
TI

O
N

 T
IM

E
(S

EC
)

DATA SIZE

Binary Jump Interpolation

46 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE, Vol.21, Issue 2, 2021

Programming Languages For Search Algorithms In
Software Complexity Metrics” , International
Research Journal of Computer Science (IRJCS),
6(4), 90 – 101. 2019.

[10] Zia, A. Z., “A Survey on Different Searching
Algorithms” International Research Journal of
Engineering and Technology, 7 (1), pp 1580–1584,
2020.

