
 

 

ISSN – 2344 – 2166 

 

 

PERFORMANCE EVALUATION OF SOME SELECTED LEARNING 

ALGORITHMS FOR SOFTWARE DEFECT PREDICTION USING 

HARMONY SEARCH ALGORITHM 
 

FOLORUNSHO Bamisaye1, V.B. Oyekunle2, O.J. Olabode3 
1Thomas Adewumi University, Nigeria, 2Lead City University, Nigeria, 3Thomas Adewumi 

University, Nigeria 
1folorunsho.bamisaye@tau.edu.ng, 2bola.oyekunle@lcu.edu.ng, 

3omosola.olabode@tau.edu.ng 

 

  
Keywords: Dimensionality reduction, Feature Selection, Defect, classification  

 

 
Abstract: Software defect is a significant area of software development that has called for the attention of 

stakeholders in the last few decades. The more software evolves, the more its reliability is of paramount. The quest 

to predict defects or better still produce error-free software is commendable, however, other factors such as 

identifying the best LM for prediction and time taken for prediction called for imperative attention. The prolonged 

processing of dataset in prediction can lead to misclassification. The long processing of dataset is inevitable when 

the large dataset is used in prediction. That is why this study has applied a meta-heuristic optimization algorithm 

for feature selection, five classifiers- Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest 

Neigbour (KNN), Naïve Baiye (NB), and C4.5, four datasets; Mylyn, Eclipse, Lucene, and Equinox and five 

evaluation metrics- precision, accuracy, recall, classification time, and F1 score. The operational output of the 

model for prediction was developed and achieved with all the aforementioned tools. The recorded results with 

HSA revealed that the ANN algorithm achieved the lowest classification time of 24.09s in the Eclipse Dataset 

which shows that the predictive rate of ANN outperformed other classifiers used for defect classification 

 

 

1. INTRODUCTION  
Software defects in software engineering are a major 

concern to developers, researchers, and end-users. 

Defects emanate from the misconception of the end-

users requirements by the software developer [1]. 

The variance between the expected and actual 

software has caused colossal losses to businesses 

and society at large. Software defects are the 

mistakes of the programmer that twists the expected 

performance of the software to generate different or 

unexpected results [2]. Software defect and bug are 

used interchangeably. However, Bugs are faults in a 

source code [3]. It causes the software to produce 

inappropriate or undesired outputs [4]. When bugs 

are being found and fixed is termed debugging [5]. 

Errors identified after the application has been 

released are characterized as software defects [6]. It 

is an aberration of the customer requirement. With 

the rapid increase of software evolution in our day, 

software security has been a major nightmare of 

stakeholders. The vulnerability of the software 

solutions calls for imperative attention to the source 

of the problem (source code and programmer), the 

effect of bugs on the software (Software Defect), 

and the troubleshooting mechanism. Software 

Defect Prediction has been a core area of concern for 

researchers in the discipline of software 

development. 

Defect prediction reduces the time and cost of 

development while customer satisfaction is 

increasing. Therefore, defect classification practices 

are imperative to achieving software quality. Defect 

prediction is identifying defective components in the 

source code. Classification of defective software 

datasets using the classifiers; Support Vector 

Machine (SVM), Artificial Neural Network (ANN), 

K-Nearest Neigbour (KNN), Naïve Baiye (NB), and 

C4.5 was executed in this study. The predicted 

results will assist developers to locate and fix 

potential defects, thereby improving software 

stability and reliability.  

Software stability is a critical issue as contemporary 

software continues to grow. The effectiveness of 

MLA depends majorly on the features used for the 

classification phase. If features are not adequately 

selected, it can result in misclassification. Feature 

reduction is a significant phase in the ML algorithm, 
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this technique consists of feature extraction and 

selection [7]. Dimensionality reduction basically 

means the process of eliminating redundancy 

attributes from the dataset while trying as much as 

possible to keep the variation in the original dataset 

unaltered. The transformation of the dataset from a 

high-dimensional state to a low-dimensional state so 

that the subset representation holds approximately 

the significant aspects of the original dataset, 

perfectly represents the intrinsic dimension, is 

known as dimensionality reduction [8]. Feature 

Selection (FS) is imperative, and it is the picking of 

the discriminant feature for model construction, thus 

reducing training times, classification time, and 

misclassification. This study developed a SD 

predictive model using the aforementioned 5 MLAs, 

HSA (as feature selection), and 5 evaluation metrics 

 

2. RELATED WORKS 
Olatunji B. L. et al. [9] applied an optimization 

algorithm called GA to pick the most important 

features in order to reduce the classification time and 

the possibility of misclassification. One Classifier, 

ANN was employed for defect classification. The 

system was implemented in MATLAB (R2018a) 

simulation environment with the execution of a 

numerical toolkit and the operating model was 

measured using four evaluation metrics. The system 

used Eclipse, Lucene, Equinox, and ECLIPSE JDT 

CORE to evaluate the performance. The result is 

represented in a tabular form below:  

 
MLA Datasets Evaluation Metrics 

Classifier Dataset Accuracy Precision Recall F-Score 

ANN ECLIPSE 
JDTCORE 

86.93 53.49 79.31 63.89% 

ANN ECLIPSE PDE 

UI, 

83.26 31.91 45.45 37.50% 

ANN EQUINOX 
FRAMEWORK 

84.43 57.69 45.45 50.80% 

ANN LUCENE 91.30 33.33 50.00 40.00% 

Table 2.1 

 

According to the literature survey, some researchers 

have examined the performance and comparison on 

some selected MLAs for the prediction of software 

defects. The study considered three different 

versions of the eclipse version control system. Data 

were split into training and tested sets. For the 

training purpose of the model Support Vector 

Machine (SVM) and ELM were used. The 

operational classification model was achieved using 

some selected evaluation metrics. The result 

recorded the SVM to be the best fit for the cross-

version defect prediction [10]. 

 

Furthermore, Rao and Patra developed a SD 

predictive system in the year 2020 using a genetic 

algorithm with a shuffled frog leap algorithm. The 

study assessed the classification accuracy, precision 

and recall, and F measure for various classifiers 

used. The ANN optimizations assumed that more 

than two algorithms for one optimization have been 

implemented. The optimization used a meta-

heuristic to select the best features for classification. 

The hybrid optimization technique for creating the 

linkages method was applied for the dimensional 

synthesis of the mechanism. The results, 5.94% of 

the NN-hybrid classifier showed that it 

outperformed the fuzzy algorithm by 3.59% and the 

1.42% value of the NN-Lm training respectively. 

Gray et al. [11] offered a study using static code 

metrics and a Support Vector Machine classifier for 

a group of modules contained inside eleven NASA 

data sets. Before classification, the data underwent a 

comprehensive pre-processing stage that included 

balancing the two classes (defective or anything 

else) and eliminating numerous repetitive events. In 

this study, the SVM achieves a normal accuracy of 

70% on previously unnoticed data. According to the 

evaluated relevant works, previously created 

software prediction systems have an overfitting 

limitation, which occurs when the system acquires 

so much detail in the training data that it severely 

affects the system's performance on fresh data. 

More also, Sanusi, B. A. et al. [12] conducted a 

defect classification model using ML-based 

algorithms. To choose the discriminant 

characteristics, the Genetic Algorithm, a nature-

inspired meta-heuristic algorithm, was used, using 

RF, DT, and ANN classification techniques, the 

selected features were classified into defect or non-

defect. Accuracy, f-score, precision, and recall were 

also used to assess the strategies. The RF and other 

learning algorithms were evaluated in terms of 

accuracy, precision, and f-score, with average scores 

of 83.40 percent, 53.18 percent, and 52.04 percent, 

respectively, among all the algorithms used. In a 

summary, the ANN outperformed other MLA as it 

recorded the best recall value result with an average 

score of 60% among the algorithms. 

Bayesian networks are used by Fenton and Neil [13] 

to forecast software quality and defects. It considers 

the restrictions of traditional software obstacles by 

utilizing random process elements as well as 

qualitative and quantitative metrics. The use of a 

sophisticated discretization algorithm results in a 

more accurate software fault prediction system. 

Furthermore, Rao, S. V. A. et al. [14] developed a 

SD predictive system in the year 2020 using a 

genetic algorithm with a shuffled frog leap 

algorithm. The study assessed the accuracy, 

precision, classification, recall, and F measure for 

various classifiers used. The ANN optimizations 

assumed that more than two algorithms for one 

optimization have been implemented. The 

optimization used a meta-heuristic to select the best 

algorithm for classification. The hybrid optimization 

technique for creating the linkages method was 

applied for the dimensional synthesis of the 

mechanism. The results, 5.94% of the NN-hybrid 
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classifier showed that it outperformed the fuzzy 

algorithm by 3.59% and the 1.42% value of the NN-

Lm training respectively. 
Lastly, in the year 2014, Ren, Qin, Ma, and Luo [26] 

also conducted how the kernel techniques can be 

applied to classify defects in software development 

since the class discrepancy can influence negatively, 

the correct operation of defect classification. There 

are two classifiers that were applied which are, 

asymmetric kernel partial least squares (AKPLS) 

and asymmetric kernel principal component analysis 

(AKPCAC) classifier. The study aimed at solving 

the class inconsistency or imbalance issue. Finally, 

the study achieved its aim by using a kernel function 

for the asymmetric partial least square classifier and 

asymmetric PCA classifier, respectively. The kernel 

function used for the two classifiers is the Gaussian 

function. The experiment was conducted in NASA 

and SOFTLAB datasets using the F-measure, 

Friedman’s test, and Tukey’s test to confirm the 

validity of the methods. 

 

Feature Selection Technique for Software Defect 

Classification 

 

To reduce prolonged processing of datasets which 

results in misclassification, this study has come up 

with a model developed using a meta-heuristic 

optimization algorithm, 5 MLAs, and 5 metrics. The 

significance of HSA in this study is to pick a relevant 

feature for defect prediction. The 5 MLAs were 

applied for classification and 5 metrics were used to 

determine the level of defect. 

In the first step, the study used HSA subset selection 

method to select pertinent feature subsets.  

The output of the FS method retains the meaningful 

representation or intrinsic dimension of the original 

dataset  

In the second step, the subset was used to predict 

defects using 5 MLAs. The results of these 

experiments are described in detail in the results and 

discussions section 

Lastly, 5 metrics were applied to determine the 

genuineness and the level of defect 

 

3. METHODOLOGY  
 

 
Figure 3.1: System Model. Block diagram of software defect predictive model 

 

3.1 Requirements specification 

 

The device with which this study generated outputs 

was a laptop computer with specifications: 3.4 GHz 

Intel Core i7 8GB RAM, running Windows OS 64-

bit (a laptop or Desktop computer with much lower 

specifications can run this simulation). The 

simulation took place in python 3.10 to evaluate the 

efficiency of the classifiers which consist of naïve 

Bayes, C4.5, SVM, K-nearest neighbour, and 

Artificial Neural Network. The study applied an 

optimization algorithm to obtain relevant features. 

Four datasets; Eclipse PDE UI, Lucence, Mylyn, 

and Equinox were processed and classified. Finally, 

the operational effectiveness of the classifiers was 

achieved using precision, accuracy, recall, 

classification time, and F1-score evaluation metrics. 
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3.3 Data Acquisition 

 

The implementation section of this study required 

the accessibility of the preceding defective software 

dataset. The dataset for this study was acquired 

from the dataset bank repository that is available for 

public use. The software datasets that were used for 

defect classification are Eclipse, Equinox. 

Lucene, and Mylyn. Each of these datasets held a 

unique piece of information, but the one that 

provided the necessary parameter for the research 

activity was used during the implementation 

process. 

 

3.4 Dataset Pre-processing 

 

Dataset pre-processing in ML is a sensitive and 

significant area that helps enhance the selection of 

the discriminant feature of the dataset for 

classification. The technique of cleaning and 

organizing the dataset make it appropriate for 

training, constructing, and testing the MLAs. 

Dataset pre-processing is a data mining method of 

transforming a dataset into a readable and more 

understandable format.  

The initiation of dataset pre-processing is required 

to clean, format, and organize the raw dataset, 

thereby making it useable for ML models. Dataset 

Acquisition is primarily, the fundamental 

prerequisite in data pre-processing as it precedes and 

is required for the development of any ML model. 

To build and develop ML models is to first acquire 

the relevant dataset. Thereafter, the dataset was split 

into two separate sets – training and testing. Follow 

by importing the dataset that has been tested and 

trained into the ML model for classification.  

 

Table 3.1 Information on Datasets 
Dataset Languages/Description Instances 

Lucene Free Apache search 

software 

691 

Mylyn Eclipse’s task, 

application, lifecycle 

management framework 

1862 

Equinox OSGi framework 

implementation applied 

 for all Eclipse 

324 

Eclipse Tools of a user interface 

for developing and 

creating Eclipse plug-ins 

and features. 

997 

 

Figure 3.2 below shows the simulation interface for 

the experimental setup.  

 

 
Figure 3.2:  Interface for Experimental Setup 

 

 

3.5 Feature Selection 

 

Feature selection (FS) can be described as a 

preprocessing method applied to pick relevant 

features. It is a vital component of pattern 

recognition and ML since it can lower computation 

costs while improving classification performance. 

Dimensionality reduction occurs when only the 

significant or relevant features are selected resulting 

to the precise classification. When compared to the 

original datasets, a smaller feature set improves 

classification accuracy. 

 

In the MLA, several FS methods have been 

introduced. The basic goal of this method is to 

eliminate the unnecessary or redundant features 

from the dataset. Wrapper and filter are the two 

types of FS techniques. The wrapper examines and 

picks attributes based on the target learning 

algorithm's accuracy estimates. Wrapper simply 

searches the feature space by omitting various 

features and analyzing the impact of feature absence 

on the prediction metrics using a specific learning 

method [15], [16]. 

  

3.6 Machine Learning Algorithms Discussed 

 

Machine learning studies automatic methods for 

learning to make accurate predictions or useful 

decisions that is based on previous experience 

observation and experience. It has grown in 

popularity, with applications in a variety of fields 

including natural language processing, speech 

recognition, computer vision, and gene discovery. 

An ML technique can build models based on labeled 
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historical websites and then these models can be 

integrated into the browser to detect phishing 

activities. When a user surfs a new web page, ML 

models guess the type of the website in real-time and 

then communicate the outcome to the end-user. 

 

CLASSIFICATION ALGORITHMS 

3.6.1 Artificial Neural Network (ANN)  

 

 
Figure 3.3: ANN [17]. 

ANN is fundamentally based on biological 

principles of neural networks, which is an emulation 

of the biological neural system. It contains a 

connected set of artificial neurons and processes 

information using a method of connectionist for 

computation.  ANN are models which draw their 

inspiration from biological nervous systems which 

comprise neural networks. Artificial Neural 

Networks (ANN) are mathematical models that can 

be applied to model complex which its connection 

between inputs and outputs or to find patterns in the 

data. This technique learns by examples, they are 

trained with known examples of the problem that 

knowledge is to be acquired from when trained well, 

it can be used effectively to provide a solution to 

similar problems of unknown instances [17]. 

 

 

3.6.2 Support Vector Machine (SVM) 

 

   

 

 
Figure 3.4: SVM [18] 

 

The SVM belongs to a generalized family of linear 

classifiers, which is mostly used in classification, 

regression, and prediction tools. The SVM 

algorithms apply models linearly to introduce class 

boundaries non-linearly by converting the instance 

space applying a nonlinear matching into a new 

space, a linear model constructed in the new space 

can then represent a nonlinear decision boundary in 

the original space. [18] 

3.6.3 Naïve Bayes (NB) 

 

 
Figure 3.5: NB [19] 

 

The Nave Bayes Classifier is a simple and effective 

classification method that aids in the development of 

fast machine learning models capable of making 

quick predictions. [19]. It is a supervised learning 

technique for addressing classification issues that 

are based on the Bayes theorem [20].  The naive 

theorem is combined with an attribute condition 

where it is assumed to be independent. The system 

scrutinizes the connection between each attribute 

and the class for each instance in order to calculate 

a conditional probability for the relationship 

between attribute values and class. This technique 

has been declared to be very effective with actual 

datasets and when combined with feature selectors 

eliminate redundant and unimportant features. The 

Bayes theorem is given as follows: 

P(H/X) = 
𝑃(𝐻)𝑃(

𝑋

𝐻
)

𝑃(𝑋)
  (2.1) [21]. 

Where P(H/X) represents the likelihood that activity 

H occurred given that test X was positive) P(X/H) 

signifies the likelihood that activity X occurred 

given that test H was positive. Also, P(H) interprets 

the possibility that event H occurred and P(X) 

characterizes the probability that event x took place. 
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3.6.4 K-Nearest Neighbour (KNN) 

 
Figure 3.6: KNN [21]. 

The algorithm applied to predict objects and data 

based on the closest training samples in the feature 

space. It represents one of the atomic techniques in 

ML. It is basically an analogy that has its basis on 

the fact that objects that are near each other will also 

have similar characteristics. This approach is also 

known as classification based on memory as the 

samples of training must be memory during 

execution. This classification technique is the basic 

classification technique with little or no prior 

knowledge about the data distribution [21] 

 

 

3.6.5 C4.5 Algorithm 

  

 

Figure 3.7: C4.5 [22] 

 

Ross Quinlan created the C4.5 algorithm, which is 

used to produce a decision tree. C4.5 generates 

decision trees that can be employed for defect 

prediction, which is why it's commonly referred to 

as a statistical classifier. The C4.5 algorithm was 

defined as a momentous DT program that is possibly 

the most commonly used ML by the Weka 

application software [21]. 

 

 

 

 

4 EVALUATION METRICS  
The operational evaluation metrics employed are 

Accuracy, Recall, classification time, Precision, and 

F-score 

i.Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝑋 100%   

(3.1) 

ii.Accuracy = 
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 𝑋 100%    (3.2) 

iii.Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (3.3) 

iv.F-measure = 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 

𝑇𝑃

𝑇𝑃+𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 
𝑇𝑃

𝑇𝑃+𝐹𝑁

  (3.4) 

where TP, FP, TN, and FN are defined as follows: 

True positive (TP): The outcome is the correctly 

predicted positive, indicating that the actual and 

projected results are both "yes." 

True negative (TN): The outcome is the correctly 

predicted negative, indicating that both the actual 

and expected result values are "No." 

False-Positive (FP): This indicates that the actual 

result is no, but the projected outcome is yes. 

False-negative (FN): This indicates that the actual 

result is yes, but the projected outcome is no. [23] 

 

4.1 Accuracy 

 

When using asymmetric datasets, where the false 

positive and false negatives have the same value, 

accuracy is defined as the percentage of properly 

predicted values to the total. It's the proportion of 

subjects who have been correctly identified to the 

total number of subjects. Accuracy is the most 

intuitive one. The following question is answered by 

accuracy:  

How many nations of Africa did we correctly label 

corrupt out of all the nations? 

Accuracy = (TP+TN)/(TP+FP+FN+TN) 

numerator: refers to all correctly labeled subjects 

(All trues) 

denominator: refers to all subjects 

 

4.2 Precision 

Precision is the function of pertinent instances 

among the recovered instances. This is the 

proportion of the correctly and positively 

categorized by the program to all positive 

categorized. 

Thus, the precision answers the following: How 

many presidents of Africa nations that we labeled as 

competent are actually competent? 

Precision = TP/(TP+FP) 

numerator: labeled competent president. 

denominator: all labeled by the program (whether 

they’re competent or not in reality). 

 

4.3 Recall  
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Sensitivity is another name for recall. The 

percentage of accurately forecasting positive for 

everyone in the actual result is referred to as recall. 

It is also the percentage of the correctly positive 

identified by the program to all who are competent 

in reality. 

The following questions are answered by recall: of 

all the presidents who are corrupt, how many of 

those do we correctly predict? 

Recall = TP/(TP+FN) 

numerator: positively labeled corrupt Presidents. 

denominator: all presidents who are corrupt 

(whether detected by the program or not)  

denominator: all labeled by the program (whether 

they’re competent or not in reality). 

 

4.4 F1-Score 

F1-score is also known as F-Score or F-Measure. 

The F1-Score is the sum of Precision and Recall, 

adjusted for false positives and negatives. 

When the data distribution is imbalanced, F1-Score 

is more effective than accuracy. Precision and recall 

are both taken into consideration while calculating 

the F1 Score. It's the harmonic mean of memory and 

precision. F1-measure is excellent if a balance can 

be accomplished between precision (p) and recall (r) 

in the system. Oppositely F1-Score is not so high if 

one measure is improved at the expense of the other. 

For example, if P is 1 and R is 0, F1 score is 0. F1-

Score = 2*(Recall*Precision) / (Recall + Precision) 

[23]. 

 

 

 

4.5 Classification Time 

 

Classification time is the time taken to complete 

software defect classification using an MLA. 

 

 

5. RESULTS AND 

IMPLEMENTATION 
 

This section explains in tabular forms, the result as 

well as the display of the simulation environment 

where the outputs of defect classification were 

generated. It mentions the result and the objectives. 

listed for the study as well as the workability of the 

methodology used to achieve these objectives.  

 

5.1 Discussion of Findings 

The Feature Selection (FS), defects classification as 

well as performance evaluation of the results (defect 

or non-defect) were conducted for different datasets 

used. The results were provided using the following 

tables. 

 

 

 

 

 

 

 

Table 5.1: Performance Metrics for Lucene Dataset 

(without HSA) 
Classifier Evaluation Metrics 

Accuracy 

(%) 

Precision recall F1-Score Classification 

Time (s) 

ANN 92.04 0.9200 1.000 0.9600 26.31 

C4.5 84.13 0.9000 0.9200 0.9100 27.45 

KNN 93.26 0.9300 1.000 0.9700 27.52 

NB 86.54 0.9100 0.9500 0.9300 27.61 

SVM 89.39 0.8900 1.000 0.9400 27.80 

 

From Table 5.1, ANN has the maximum accuracy 

value of 92.04%, KNN has the best precision value 

of 0.9300, the best Recall value of 1.000 was 

obtained in KNN, ANN, and SVM. KNN has the 

best F1-score value of 0.9700 and ANN has the 

lowest classification time of 26.31s was obtained in 

Lucene. 

 

Table 5.2: Performance Metrics for Lucene Dataset 

(with HSA) 
Classifier Evaluation Metrics 

Accuracy 

(%) 

Precision recall F1-

Score 

Classification 

Time (s) 

ANN 90.25 0.9000 0.9500 0.9500 27.20 

C4.5 84.13 0.9000 0.9200 0.9100 27.30 

KNN 93.27 0.9300 1.000 0.9700 27.40 

NB 86.54 0.9100 0.9500 0.9300 27.30 

SVM 89.39 0.8900 1.000 0.9400 27.35 

     

From Table 5.2, KNN recorded a value of 93.27% at 

its highest degree, precision at the best degree value 

of 0.9300 was recorded in KNN. SVM and KNN 

both have the best Recall value of 1.000, ANN has 

the best F1-score value of 0.9500 as well as lowest 

classification time of 27.20s, all obtained in Lucene 

dataset.      

 

Table 5.3: Performance Metrics for Mylyn Dataset 

(without HSA)    
Classifier Evaluation Metrics 

Accuracy 

(%) 

Precision recall F1-Score Classification 

Time (s) 

ANN 63.08 0.6300 0.9900 0.7700 26.01 

C4.5 66.33 0.7500 0.6900 0.7200 26.05 

KNN 75.51 0.7700 0.8200 0.8000 26.10 

NB 69.39 0.6800 0.9500 0.7900 26.15 

SVM 61.22 0.6400 0.8500 0.7300 26.35 

 

From Table 5.3, SVM has the most correct value of 

86.31%, NB has the highest precision degree of 

0.9000, SVM has the best Recall value of 1.000, and 

SVM has the best F1-score value of 0.9800, all 

obtained Mylyn Dataset. 
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Table 5.4: Performance Metrics for Mylyn Dataset 

(with HSA) 
Classifier Evaluation Metrics 

Accuracy 

(%) 

Precision recall F1-Score Classification 

Time (s) 

ANN 85.64 0.8600 1.000 0.9200 29.07 

C4.5 78.18 0.8800 0.8600 0.8700 29.19 

KNN 86.94 0.8800 0.9900 0.9300 29.29 

NB 85.15 0.9000 0.9400 0.9200 29.46 

SVM 87.30 0.8700 1.000 0.9300 29.8 

 

From Table 5.4, KNN has the most accurate value 

of 86.94%, NB recorded the most precision value of 

0.9000, and the best Recall value of 1.000 was 

obtained in both SVM and ANN, SVM has the best 

F1-score value of 0.9300 all obtained in Mylyn 

Dataset. 

 

 

Table 5.5: Performance Metrics for Equinox 

Dataset (without HSA) 
Classifier Evaluation Metrics 

Accuracy 

(%) 

Precision recall F1-

Score 

Classification 

Time (s) 

ANN 48.03 0.4800 1.000 0.6500 25.61 

C4.5 66.33 0.7500 0.6900 0.7200 26.08 

KNN 75.51 0.7700 0.8200 0.8000 26.12 

NB 69.38 0.6800 0.9100 0.9500 26.21 

SVM 61.22 0.6400 0.8500 0.7300 26.50 
 

 

From Table 5.5, KNN has the leading accuracy of 

75.51%. KNN has the peak precision of 0.7700, 

ANN obtained the topmost Recall of 1.000, and the 

maximum F1-score value of 0.9500 was obtained in 

NB and the classification time of 26.08s was 

recorded in C4.5 all obtained Equinox Framework 

Dataset. 

 

 

Table 5.6: Performance Metrics for Equinox 

Dataset (with HSA) 
Classifier Evaluation Metrics 

Accuracy 

(%) 

Precision recall F1-Score Classification 

Time (s) 

ANN 84.52 0.8500 0.9900 0.9100 27.74 

C4.5 79.36 0.8800 0.8800 0.8800 28.27 

KNN 85.51 0.8700 0.9800 0.9200 28.43 

NB 83.33 0.9000 0.9100 0.9000 28.72 

SVM 86.31 0.8600 1.000 0.9800 28.90 

 

From Table 5.6, KNN has the leading accuracy of 

75.51%, KNN has the uppermost precision of 

0.7700, ANN has the best Recall value of 0.9900, 

NB has the best F1-score value of 0.8000 and ANN 

has the classification time of 26.01s all obtained 

Equinox Framework Dataset  

 

Table 5.7: Performance Metrics for Eclipse PDE UI 

Dataset (without HSA) 
Classifier Evaluation Metrics 

Accuracy 

(%) 

Precision recall F1-Score Classification 

Time (s) 

ANN 89.16 0.8900 1.000 0.9400 24.14 

C4.5 78.09 0.8600 0.8800 0.8700 24.44 

KNN 84.85 0.8600 0.9800 0.9200 24.56 

NB 81.35 0.8600 0.9300 0.8900 24.68 

SVM 83.22 0.8500 1.000 0.9200 24.70 
 

 

From Table 5.7, ANN has the best accuracy of 

89.16%. ANN has the best precision of 0.8900. 

Also, ANN has the best Recall of 1.000. ANN and 

SVM both have the best F1-score value of 

0.9400was. The lowest classification time of 24.14s 

was recorded in ANN all obtained Eclipse Dataset. 

 

Table 5.8: Performance Metrics for Eclipse PDE UI 

Dataset (with HSA) 
Classifier Evaluation Metrics 

Accuracy 

(%) 

Precision recall F1-Score Classification 

Time (s) 

ANN 85.97 0.8600 1.000 0.9200 24.09 

C4.5 77.78 0.8800 0.8700 0.9000 25.04 

KNN 83.11 0.8400 0.9900 0.9100 25.18 

NB 81.56 0.8800 0.9100 0.8900 25.48 

SVM 86.44 0.8600 1.000 0.9300 25.52 
 

 

From Table 5.8, SVM has the highest accuracy 

value of 86.44%, ANN has the topmost precision 

value of 0.8900, ANN has the best Recall value of 

1.000 while SVM also has the best F1-score value 

of 0.9400was in ANN, and finally, the lowest 

classification time of 24.14s was recorded in ANN 

all obtained Eclipse Dataset. 

 

 

 

 

6.  COMPARATIVE ANALYSIS 

RESULTS OF DEFECT PREDICTION 

 

Comparative analysis of defect prediction was 

conducted for the different datasets with respect to 

different datasets used. The results were provided 

using the following Figures.   

 
Figure 6.1: Comparative Analysis for Accuracy (%) (Without HSA) 

 
 

From Figure 6.1, the highest accuracy of 99.26% 

was obtained in KNN for Lucene dataset, while the 

lowest accuracy of 48.03% was recorded in ANN for 
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Equinox framework dataset all obtained when the 

HSA was not applied for FS 

 
 

Figure 6.2: Comparative Analysis for Accuracy (%) (With 

HSA) 
 

From Figure 6.2, the highest accuracy of 93.27% was 

obtained in KNN for Lucene dataset, while the lowest 

accuracy of 61.22% was recorded in SVM for Equinox 

framework dataset all obtained when the HSA was applied 

for FS 

 
Figure 6.3: Comparative Analysis for Precision (without HSA) 

  

From Figure 6.2, KNN has the top precision value 

of 0.9900 in KNN for Lucene dataset, while the 

lowest accuracy of 0.4800 was recorded in ANN for 

Equinox framework dataset all obtained when the 

HSA was not applied for feature selection 

 
Figure 6.4: Comparative Analysis for Precision (with 

HSA) 
  

From Figure 6.4, KNN has the peak precision value of 

0.9900 in KNN for Lucene dataset, while the lowest 

accuracy of 0.6300 was recorded in ANN for Equinox 

framework dataset all obtained when the HSA was applied 

for FS 

 
  
Figure 6.5: Comparative Analysis for Recall (without HSA) 
  

From Figure 6.5, the highest recall value of 1.000 was 

obtained in ANN for Eclipse, Lucene dataset, also 1.000 

was recorded in KNN for Lucene, 1.000 was recorded in 

SVM, for Mylyn, Eclipse Dataset, Lucene and Equinox 

Framework, the lowest recall value of 0.6900 was 

obtained in C4.5 for Equinox Framework when no FS was 

applied 

 
Figure 6.6: Comparative Analysis for Recall (with HSA) 

 

From Figure 6.6, the highest recall value of 1.000 was 

obtained in ANN for Mylyn, Lucene, 1.000 was obtained 

in KNN for Lucene, 1.000 was obtained in SVM for 

Mylyn, Eclipse, and Lucene, and the lowest recall value 

of 0.6900 was recorded in C4.5 for Equinox Framework 

when HSA was applied to pick feature. 

 

 
Figure 6.7: Comparative Analysis for F1-Score (without HSA) 

From Figure 6.7, F1-score has the best value of 

0.9800 in SVM for Mylyn, and Recall has the lowest 

value of 0.6500 in ANN for Equinox Framework 

when HAS was not was applied.  

 

 
Figure 6.8: Comparative Analysis for F1-Score (with HSA) 
 

From Figure 6.8, the best F1-score value of 0.9700 

was recorded in KNN for Lucene and the lowest 

recall value of 0.7200 was recorded in C4.5 for 

Equinox Framework when the HSA was applied. 

 

 

 
Figure 6.9: Comparative Analysis for Classification Time 

(s) (without HSA) 
 

From Figure 6.9, the lowest classification time of 

24.14s was obtained in ANN for Eclipse Dataset 

while the highest classification time of 28.90 was 

recorded in SVM for Mylyn when HSA was not 

applied.  
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Figure 6.10: Comparative Analysis for Classification 

Time (s) (with HSA) 

 

From Figure 6.10, the lowest classification time of 

24.09s was obtained in ANN for Eclipse Dataset 

while the highest classification time of 29.80 was 

recorded in SVM for Mylyn when HSA was applied. 

 

 

7. CONCLUSION SUMMARY OF 

FINDINGS 

 
Feature selection has been considered by researchers 

to be one of the predominant stages in the SDP 

system. It involves the techniques of obtaining the 

discriminant feature of the original dataset in which 

an initial set of raw datasets is reduced to a more 

manageable form for classification purposes. 

Representation of feature produces an 

approximation to the original feature in fewer 

dimensions, while still maintaining the same 

structure of original features. This study designed a 

software defect classifying system using some 

selected MLAs. An optimization algorithm known 

as HSA was introduced for  

 

The experimental result showed the maximum 

accuracy of 99.26% was obtained in KNN in the 

Lucene dataset when the HSA was not used, the 

highest precision of 0.9900 which was also the best 

precision was obtained in KNN recorded in Lucence 

when the HSA was not applied. The highest recall 

of 1.0000 which is also the best recall was obtained 

in ANN and KNN in Lucene, also 1.000 was 

obtained in SVM for Mylyn, Dataset 2 PDE UI, 

Lucence, and Equinox framework dataset when 

harmony search was not applied. When the HSA 

was not applied, the Recall has the best record value 

of 1.000 in ANN for Mylyn while in Lucence, 1.000 

was recorded in KNN for Lucence, and 1.000 was 

obtained in SVM for Dataset2PDE UI and Lucence. 

dataset and the highest F1-score of 0.9800 which is 

also the best F1-score were obtained in SVM for 

Mylyn and the lowest classification time of 24.14s 

was recorded in ANN for Eclipse. The study 

concluded that the application of the HSA resulted 

in a slight improvement in some aspects of the SDP 

system. 

 

7.1 Recommendation 
 

There are tendencies for prolonged processing of the 

dataset and misclassification using the whole dataset 

discriminant feature. defect prediction. Hence, 

applying a FS technique reduces the risk of 

prolonged data processing and misclassification. 

The defect classification model enhances the 

achievement of quality and reliable software as well 

as improves customer satisfaction. For an efficient 

defect prediction, it is strongly recommended to 

apply FS to pick the subset of the discriminant 

feature. 

 

7.2 Contribution to Knowledge 

 

The impact or contribution of this study includes: 

1. To begin, this study identified HSA to be an 

effective Feature Selection.  

2. After that, this study also presented an active 

model for SDP using an optimization 
algorithm (HSA), classifiers (SVM, ANN, 

KNN, C4.5, & NB), and metrics (precision, 

recall, classification time, F1-score, and 

accuracy) 

3. Artificial Neural Network has the lowest 

classification time of 24.04s 

4. HSA was found to be very efficient in 

dimensionality reduction through feature 

selection which reduced prolonged data 

processing, classification time, and 

misclassification. 

5. Finally, the results of our experiments show 

that selecting relevant features for 

classification reduces prediction time 

 

7.3 Suggestions for further studies 

 

The following recommendations are listed to draw 

the attention of future studies in SDP systems: 

1. Developing a single model that can be used 

to select features and predict defects of 

text, images, and others 

2. In the future, to further enrich and broaden 

the scope of the research, we may include 

more optimization algorithms, MLAs, and 

diversified software defect datasets in the 

testing and experimentation process. 

3. Furthermore, we may compare the 

performance of the new ensemble 

techniques results with this study. 
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