

ISSN – 2344 – 2166

PERFORMANCE EVALUATION OF SOME SELECTED LEARNING

ALGORITHMS FOR SOFTWARE DEFECT PREDICTION USING

HARMONY SEARCH ALGORITHM

FOLORUNSHO Bamisaye1, V.B. Oyekunle2, O.J. Olabode3
1Thomas Adewumi University, Nigeria, 2Lead City University, Nigeria, 3Thomas Adewumi

University, Nigeria
1folorunsho.bamisaye@tau.edu.ng, 2bola.oyekunle@lcu.edu.ng,

3omosola.olabode@tau.edu.ng

Keywords: Dimensionality reduction, Feature Selection, Defect, classification

Abstract: Software defect is a significant area of software development that has called for the attention of

stakeholders in the last few decades. The more software evolves, the more its reliability is of paramount. The quest

to predict defects or better still produce error-free software is commendable, however, other factors such as

identifying the best LM for prediction and time taken for prediction called for imperative attention. The prolonged

processing of dataset in prediction can lead to misclassification. The long processing of dataset is inevitable when

the large dataset is used in prediction. That is why this study has applied a meta-heuristic optimization algorithm

for feature selection, five classifiers- Support Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest

Neigbour (KNN), Naïve Baiye (NB), and C4.5, four datasets; Mylyn, Eclipse, Lucene, and Equinox and five

evaluation metrics- precision, accuracy, recall, classification time, and F1 score. The operational output of the

model for prediction was developed and achieved with all the aforementioned tools. The recorded results with

HSA revealed that the ANN algorithm achieved the lowest classification time of 24.09s in the Eclipse Dataset

which shows that the predictive rate of ANN outperformed other classifiers used for defect classification

1. INTRODUCTION
Software defects in software engineering are a major

concern to developers, researchers, and end-users.

Defects emanate from the misconception of the end-

users requirements by the software developer [1].

The variance between the expected and actual

software has caused colossal losses to businesses

and society at large. Software defects are the

mistakes of the programmer that twists the expected

performance of the software to generate different or

unexpected results [2]. Software defect and bug are

used interchangeably. However, Bugs are faults in a

source code [3]. It causes the software to produce

inappropriate or undesired outputs [4]. When bugs

are being found and fixed is termed debugging [5].

Errors identified after the application has been

released are characterized as software defects [6]. It

is an aberration of the customer requirement. With

the rapid increase of software evolution in our day,

software security has been a major nightmare of

stakeholders. The vulnerability of the software

solutions calls for imperative attention to the source

of the problem (source code and programmer), the

effect of bugs on the software (Software Defect),

and the troubleshooting mechanism. Software

Defect Prediction has been a core area of concern for

researchers in the discipline of software

development.

Defect prediction reduces the time and cost of

development while customer satisfaction is

increasing. Therefore, defect classification practices

are imperative to achieving software quality. Defect

prediction is identifying defective components in the

source code. Classification of defective software

datasets using the classifiers; Support Vector

Machine (SVM), Artificial Neural Network (ANN),

K-Nearest Neigbour (KNN), Naïve Baiye (NB), and

C4.5 was executed in this study. The predicted

results will assist developers to locate and fix

potential defects, thereby improving software

stability and reliability.

Software stability is a critical issue as contemporary

software continues to grow. The effectiveness of

MLA depends majorly on the features used for the

classification phase. If features are not adequately

selected, it can result in misclassification. Feature

reduction is a significant phase in the ML algorithm,

10 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE, Vol.22, Issue 2, 2022

this technique consists of feature extraction and

selection [7]. Dimensionality reduction basically

means the process of eliminating redundancy

attributes from the dataset while trying as much as

possible to keep the variation in the original dataset

unaltered. The transformation of the dataset from a

high-dimensional state to a low-dimensional state so

that the subset representation holds approximately

the significant aspects of the original dataset,

perfectly represents the intrinsic dimension, is

known as dimensionality reduction [8]. Feature

Selection (FS) is imperative, and it is the picking of

the discriminant feature for model construction, thus

reducing training times, classification time, and

misclassification. This study developed a SD

predictive model using the aforementioned 5 MLAs,

HSA (as feature selection), and 5 evaluation metrics

2. RELATED WORKS
Olatunji B. L. et al. [9] applied an optimization

algorithm called GA to pick the most important

features in order to reduce the classification time and

the possibility of misclassification. One Classifier,

ANN was employed for defect classification. The

system was implemented in MATLAB (R2018a)

simulation environment with the execution of a

numerical toolkit and the operating model was

measured using four evaluation metrics. The system

used Eclipse, Lucene, Equinox, and ECLIPSE JDT

CORE to evaluate the performance. The result is

represented in a tabular form below:

MLA Datasets Evaluation Metrics

Classifier Dataset Accuracy Precision Recall F-Score

ANN ECLIPSE
JDTCORE

86.93 53.49 79.31 63.89%

ANN ECLIPSE PDE

UI,

83.26 31.91 45.45 37.50%

ANN EQUINOX
FRAMEWORK

84.43 57.69 45.45 50.80%

ANN LUCENE 91.30 33.33 50.00 40.00%

Table 2.1

According to the literature survey, some researchers

have examined the performance and comparison on

some selected MLAs for the prediction of software

defects. The study considered three different

versions of the eclipse version control system. Data

were split into training and tested sets. For the

training purpose of the model Support Vector

Machine (SVM) and ELM were used. The

operational classification model was achieved using

some selected evaluation metrics. The result

recorded the SVM to be the best fit for the cross-

version defect prediction [10].

Furthermore, Rao and Patra developed a SD

predictive system in the year 2020 using a genetic

algorithm with a shuffled frog leap algorithm. The

study assessed the classification accuracy, precision

and recall, and F measure for various classifiers

used. The ANN optimizations assumed that more

than two algorithms for one optimization have been

implemented. The optimization used a meta-

heuristic to select the best features for classification.

The hybrid optimization technique for creating the

linkages method was applied for the dimensional

synthesis of the mechanism. The results, 5.94% of

the NN-hybrid classifier showed that it

outperformed the fuzzy algorithm by 3.59% and the

1.42% value of the NN-Lm training respectively.

Gray et al. [11] offered a study using static code

metrics and a Support Vector Machine classifier for

a group of modules contained inside eleven NASA

data sets. Before classification, the data underwent a

comprehensive pre-processing stage that included

balancing the two classes (defective or anything

else) and eliminating numerous repetitive events. In

this study, the SVM achieves a normal accuracy of

70% on previously unnoticed data. According to the

evaluated relevant works, previously created

software prediction systems have an overfitting

limitation, which occurs when the system acquires

so much detail in the training data that it severely

affects the system's performance on fresh data.

More also, Sanusi, B. A. et al. [12] conducted a

defect classification model using ML-based

algorithms. To choose the discriminant

characteristics, the Genetic Algorithm, a nature-

inspired meta-heuristic algorithm, was used, using

RF, DT, and ANN classification techniques, the

selected features were classified into defect or non-

defect. Accuracy, f-score, precision, and recall were

also used to assess the strategies. The RF and other

learning algorithms were evaluated in terms of

accuracy, precision, and f-score, with average scores

of 83.40 percent, 53.18 percent, and 52.04 percent,

respectively, among all the algorithms used. In a

summary, the ANN outperformed other MLA as it

recorded the best recall value result with an average

score of 60% among the algorithms.

Bayesian networks are used by Fenton and Neil [13]

to forecast software quality and defects. It considers

the restrictions of traditional software obstacles by

utilizing random process elements as well as

qualitative and quantitative metrics. The use of a

sophisticated discretization algorithm results in a

more accurate software fault prediction system.

Furthermore, Rao, S. V. A. et al. [14] developed a

SD predictive system in the year 2020 using a

genetic algorithm with a shuffled frog leap

algorithm. The study assessed the accuracy,

precision, classification, recall, and F measure for

various classifiers used. The ANN optimizations

assumed that more than two algorithms for one

optimization have been implemented. The

optimization used a meta-heuristic to select the best

algorithm for classification. The hybrid optimization

technique for creating the linkages method was

applied for the dimensional synthesis of the

mechanism. The results, 5.94% of the NN-hybrid

FOLORUNSHO Bamisaye, V.B. Oyekunle, O.J. Olabode

PERFORMANCE EVALUATION OF SOME SELECTED LEARNING ALGORITHMS FOR SOFTWARE DEFECT

PREDICTION USING HARMONY SEARCH ALGORITHM 11

classifier showed that it outperformed the fuzzy

algorithm by 3.59% and the 1.42% value of the NN-

Lm training respectively.
Lastly, in the year 2014, Ren, Qin, Ma, and Luo [26]

also conducted how the kernel techniques can be

applied to classify defects in software development

since the class discrepancy can influence negatively,

the correct operation of defect classification. There

are two classifiers that were applied which are,

asymmetric kernel partial least squares (AKPLS)

and asymmetric kernel principal component analysis

(AKPCAC) classifier. The study aimed at solving

the class inconsistency or imbalance issue. Finally,

the study achieved its aim by using a kernel function

for the asymmetric partial least square classifier and

asymmetric PCA classifier, respectively. The kernel

function used for the two classifiers is the Gaussian

function. The experiment was conducted in NASA

and SOFTLAB datasets using the F-measure,

Friedman’s test, and Tukey’s test to confirm the

validity of the methods.

Feature Selection Technique for Software Defect

Classification

To reduce prolonged processing of datasets which

results in misclassification, this study has come up

with a model developed using a meta-heuristic

optimization algorithm, 5 MLAs, and 5 metrics. The

significance of HSA in this study is to pick a relevant

feature for defect prediction. The 5 MLAs were

applied for classification and 5 metrics were used to

determine the level of defect.

In the first step, the study used HSA subset selection

method to select pertinent feature subsets.

The output of the FS method retains the meaningful

representation or intrinsic dimension of the original

dataset

In the second step, the subset was used to predict

defects using 5 MLAs. The results of these

experiments are described in detail in the results and

discussions section

Lastly, 5 metrics were applied to determine the

genuineness and the level of defect

3. METHODOLOGY

Figure 3.1: System Model. Block diagram of software defect predictive model

3.1 Requirements specification

The device with which this study generated outputs

was a laptop computer with specifications: 3.4 GHz

Intel Core i7 8GB RAM, running Windows OS 64-

bit (a laptop or Desktop computer with much lower

specifications can run this simulation). The

simulation took place in python 3.10 to evaluate the

efficiency of the classifiers which consist of naïve

Bayes, C4.5, SVM, K-nearest neighbour, and

Artificial Neural Network. The study applied an

optimization algorithm to obtain relevant features.

Four datasets; Eclipse PDE UI, Lucence, Mylyn,

and Equinox were processed and classified. Finally,

the operational effectiveness of the classifiers was

achieved using precision, accuracy, recall,

classification time, and F1-score evaluation metrics.

10 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE, Vol.22, Issue 2, 2022

3.3 Data Acquisition

The implementation section of this study required

the accessibility of the preceding defective software

dataset. The dataset for this study was acquired

from the dataset bank repository that is available for

public use. The software datasets that were used for

defect classification are Eclipse, Equinox.

Lucene, and Mylyn. Each of these datasets held a

unique piece of information, but the one that

provided the necessary parameter for the research

activity was used during the implementation

process.

3.4 Dataset Pre-processing

Dataset pre-processing in ML is a sensitive and

significant area that helps enhance the selection of

the discriminant feature of the dataset for

classification. The technique of cleaning and

organizing the dataset make it appropriate for

training, constructing, and testing the MLAs.

Dataset pre-processing is a data mining method of

transforming a dataset into a readable and more

understandable format.

The initiation of dataset pre-processing is required

to clean, format, and organize the raw dataset,

thereby making it useable for ML models. Dataset

Acquisition is primarily, the fundamental

prerequisite in data pre-processing as it precedes and

is required for the development of any ML model.

To build and develop ML models is to first acquire

the relevant dataset. Thereafter, the dataset was split

into two separate sets – training and testing. Follow

by importing the dataset that has been tested and

trained into the ML model for classification.

Table 3.1 Information on Datasets
Dataset Languages/Description Instances

Lucene Free Apache search

software

691

Mylyn Eclipse’s task,

application, lifecycle

management framework

1862

Equinox OSGi framework

implementation applied

 for all Eclipse

324

Eclipse Tools of a user interface

for developing and

creating Eclipse plug-ins

and features.

997

Figure 3.2 below shows the simulation interface for

the experimental setup.

Figure 3.2: Interface for Experimental Setup

3.5 Feature Selection

Feature selection (FS) can be described as a

preprocessing method applied to pick relevant

features. It is a vital component of pattern

recognition and ML since it can lower computation

costs while improving classification performance.

Dimensionality reduction occurs when only the

significant or relevant features are selected resulting

to the precise classification. When compared to the

original datasets, a smaller feature set improves

classification accuracy.

In the MLA, several FS methods have been

introduced. The basic goal of this method is to

eliminate the unnecessary or redundant features

from the dataset. Wrapper and filter are the two

types of FS techniques. The wrapper examines and

picks attributes based on the target learning

algorithm's accuracy estimates. Wrapper simply

searches the feature space by omitting various

features and analyzing the impact of feature absence

on the prediction metrics using a specific learning

method [15], [16].

3.6 Machine Learning Algorithms Discussed

Machine learning studies automatic methods for

learning to make accurate predictions or useful

decisions that is based on previous experience

observation and experience. It has grown in

popularity, with applications in a variety of fields

including natural language processing, speech

recognition, computer vision, and gene discovery.

An ML technique can build models based on labeled

FOLORUNSHO Bamisaye, V.B. Oyekunle, O.J. Olabode

PERFORMANCE EVALUATION OF SOME SELECTED LEARNING ALGORITHMS FOR SOFTWARE DEFECT

PREDICTION USING HARMONY SEARCH ALGORITHM 11

historical websites and then these models can be

integrated into the browser to detect phishing

activities. When a user surfs a new web page, ML

models guess the type of the website in real-time and

then communicate the outcome to the end-user.

CLASSIFICATION ALGORITHMS

3.6.1 Artificial Neural Network (ANN)

Figure 3.3: ANN [17].

ANN is fundamentally based on biological

principles of neural networks, which is an emulation

of the biological neural system. It contains a

connected set of artificial neurons and processes

information using a method of connectionist for

computation. ANN are models which draw their

inspiration from biological nervous systems which

comprise neural networks. Artificial Neural

Networks (ANN) are mathematical models that can

be applied to model complex which its connection

between inputs and outputs or to find patterns in the

data. This technique learns by examples, they are

trained with known examples of the problem that

knowledge is to be acquired from when trained well,

it can be used effectively to provide a solution to

similar problems of unknown instances [17].

3.6.2 Support Vector Machine (SVM)

Figure 3.4: SVM [18]

The SVM belongs to a generalized family of linear

classifiers, which is mostly used in classification,

regression, and prediction tools. The SVM

algorithms apply models linearly to introduce class

boundaries non-linearly by converting the instance

space applying a nonlinear matching into a new

space, a linear model constructed in the new space

can then represent a nonlinear decision boundary in

the original space. [18]

3.6.3 Naïve Bayes (NB)

Figure 3.5: NB [19]

The Nave Bayes Classifier is a simple and effective

classification method that aids in the development of

fast machine learning models capable of making

quick predictions. [19]. It is a supervised learning

technique for addressing classification issues that

are based on the Bayes theorem [20]. The naive

theorem is combined with an attribute condition

where it is assumed to be independent. The system

scrutinizes the connection between each attribute

and the class for each instance in order to calculate

a conditional probability for the relationship

between attribute values and class. This technique

has been declared to be very effective with actual

datasets and when combined with feature selectors

eliminate redundant and unimportant features. The

Bayes theorem is given as follows:

P(H/X) =
𝑃(𝐻)𝑃(

𝑋

𝐻
)

𝑃(𝑋)
 (2.1) [21].

Where P(H/X) represents the likelihood that activity

H occurred given that test X was positive) P(X/H)

signifies the likelihood that activity X occurred

given that test H was positive. Also, P(H) interprets

the possibility that event H occurred and P(X)

characterizes the probability that event x took place.

12 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE, Vol.22, Issue 2, 2022

3.6.4 K-Nearest Neighbour (KNN)

Figure 3.6: KNN [21].

The algorithm applied to predict objects and data

based on the closest training samples in the feature

space. It represents one of the atomic techniques in

ML. It is basically an analogy that has its basis on

the fact that objects that are near each other will also

have similar characteristics. This approach is also

known as classification based on memory as the

samples of training must be memory during

execution. This classification technique is the basic

classification technique with little or no prior

knowledge about the data distribution [21]

3.6.5 C4.5 Algorithm

Figure 3.7: C4.5 [22]

Ross Quinlan created the C4.5 algorithm, which is

used to produce a decision tree. C4.5 generates

decision trees that can be employed for defect

prediction, which is why it's commonly referred to

as a statistical classifier. The C4.5 algorithm was

defined as a momentous DT program that is possibly

the most commonly used ML by the Weka

application software [21].

4 EVALUATION METRICS
The operational evaluation metrics employed are

Accuracy, Recall, classification time, Precision, and

F-score

i.Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝑋 100%

(3.1)

ii.Accuracy =
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 𝑋 100% (3.2)

iii.Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3.3)

iv.F-measure =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×

𝑇𝑃

𝑇𝑃+𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
𝑇𝑃

𝑇𝑃+𝐹𝑁

 (3.4)

where TP, FP, TN, and FN are defined as follows:

True positive (TP): The outcome is the correctly

predicted positive, indicating that the actual and

projected results are both "yes."

True negative (TN): The outcome is the correctly

predicted negative, indicating that both the actual

and expected result values are "No."

False-Positive (FP): This indicates that the actual

result is no, but the projected outcome is yes.

False-negative (FN): This indicates that the actual

result is yes, but the projected outcome is no. [23]

4.1 Accuracy

When using asymmetric datasets, where the false

positive and false negatives have the same value,

accuracy is defined as the percentage of properly

predicted values to the total. It's the proportion of

subjects who have been correctly identified to the

total number of subjects. Accuracy is the most

intuitive one. The following question is answered by

accuracy:

How many nations of Africa did we correctly label

corrupt out of all the nations?

Accuracy = (TP+TN)/(TP+FP+FN+TN)

numerator: refers to all correctly labeled subjects

(All trues)

denominator: refers to all subjects

4.2 Precision

Precision is the function of pertinent instances

among the recovered instances. This is the

proportion of the correctly and positively

categorized by the program to all positive

categorized.

Thus, the precision answers the following: How

many presidents of Africa nations that we labeled as

competent are actually competent?

Precision = TP/(TP+FP)

numerator: labeled competent president.

denominator: all labeled by the program (whether

they’re competent or not in reality).

4.3 Recall

FOLORUNSHO Bamisaye, V.B. Oyekunle, O.J. Olabode

PERFORMANCE EVALUATION OF SOME SELECTED LEARNING ALGORITHMS FOR SOFTWARE DEFECT

PREDICTION USING HARMONY SEARCH ALGORITHM 13

Sensitivity is another name for recall. The

percentage of accurately forecasting positive for

everyone in the actual result is referred to as recall.

It is also the percentage of the correctly positive

identified by the program to all who are competent

in reality.

The following questions are answered by recall: of

all the presidents who are corrupt, how many of

those do we correctly predict?

Recall = TP/(TP+FN)

numerator: positively labeled corrupt Presidents.

denominator: all presidents who are corrupt

(whether detected by the program or not)

denominator: all labeled by the program (whether

they’re competent or not in reality).

4.4 F1-Score

F1-score is also known as F-Score or F-Measure.

The F1-Score is the sum of Precision and Recall,

adjusted for false positives and negatives.

When the data distribution is imbalanced, F1-Score

is more effective than accuracy. Precision and recall

are both taken into consideration while calculating

the F1 Score. It's the harmonic mean of memory and

precision. F1-measure is excellent if a balance can

be accomplished between precision (p) and recall (r)

in the system. Oppositely F1-Score is not so high if

one measure is improved at the expense of the other.

For example, if P is 1 and R is 0, F1 score is 0. F1-

Score = 2*(Recall*Precision) / (Recall + Precision)

[23].

4.5 Classification Time

Classification time is the time taken to complete

software defect classification using an MLA.

5. RESULTS AND

IMPLEMENTATION

This section explains in tabular forms, the result as

well as the display of the simulation environment

where the outputs of defect classification were

generated. It mentions the result and the objectives.

listed for the study as well as the workability of the

methodology used to achieve these objectives.

5.1 Discussion of Findings

The Feature Selection (FS), defects classification as

well as performance evaluation of the results (defect

or non-defect) were conducted for different datasets

used. The results were provided using the following

tables.

Table 5.1: Performance Metrics for Lucene Dataset

(without HSA)
Classifier Evaluation Metrics

Accuracy

(%)

Precision recall F1-Score Classification

Time (s)

ANN 92.04 0.9200 1.000 0.9600 26.31

C4.5 84.13 0.9000 0.9200 0.9100 27.45

KNN 93.26 0.9300 1.000 0.9700 27.52

NB 86.54 0.9100 0.9500 0.9300 27.61

SVM 89.39 0.8900 1.000 0.9400 27.80

From Table 5.1, ANN has the maximum accuracy

value of 92.04%, KNN has the best precision value

of 0.9300, the best Recall value of 1.000 was

obtained in KNN, ANN, and SVM. KNN has the

best F1-score value of 0.9700 and ANN has the

lowest classification time of 26.31s was obtained in

Lucene.

Table 5.2: Performance Metrics for Lucene Dataset

(with HSA)
Classifier Evaluation Metrics

Accuracy

(%)

Precision recall F1-

Score

Classification

Time (s)

ANN 90.25 0.9000 0.9500 0.9500 27.20

C4.5 84.13 0.9000 0.9200 0.9100 27.30

KNN 93.27 0.9300 1.000 0.9700 27.40

NB 86.54 0.9100 0.9500 0.9300 27.30

SVM 89.39 0.8900 1.000 0.9400 27.35

From Table 5.2, KNN recorded a value of 93.27% at

its highest degree, precision at the best degree value

of 0.9300 was recorded in KNN. SVM and KNN

both have the best Recall value of 1.000, ANN has

the best F1-score value of 0.9500 as well as lowest

classification time of 27.20s, all obtained in Lucene

dataset.

Table 5.3: Performance Metrics for Mylyn Dataset

(without HSA)
Classifier Evaluation Metrics

Accuracy

(%)

Precision recall F1-Score Classification

Time (s)

ANN 63.08 0.6300 0.9900 0.7700 26.01

C4.5 66.33 0.7500 0.6900 0.7200 26.05

KNN 75.51 0.7700 0.8200 0.8000 26.10

NB 69.39 0.6800 0.9500 0.7900 26.15

SVM 61.22 0.6400 0.8500 0.7300 26.35

From Table 5.3, SVM has the most correct value of

86.31%, NB has the highest precision degree of

0.9000, SVM has the best Recall value of 1.000, and

SVM has the best F1-score value of 0.9800, all

obtained Mylyn Dataset.

14 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE, Vol.22, Issue 2, 2022

Table 5.4: Performance Metrics for Mylyn Dataset

(with HSA)
Classifier Evaluation Metrics

Accuracy

(%)

Precision recall F1-Score Classification

Time (s)

ANN 85.64 0.8600 1.000 0.9200 29.07

C4.5 78.18 0.8800 0.8600 0.8700 29.19

KNN 86.94 0.8800 0.9900 0.9300 29.29

NB 85.15 0.9000 0.9400 0.9200 29.46

SVM 87.30 0.8700 1.000 0.9300 29.8

From Table 5.4, KNN has the most accurate value

of 86.94%, NB recorded the most precision value of

0.9000, and the best Recall value of 1.000 was

obtained in both SVM and ANN, SVM has the best

F1-score value of 0.9300 all obtained in Mylyn

Dataset.

Table 5.5: Performance Metrics for Equinox

Dataset (without HSA)
Classifier Evaluation Metrics

Accuracy

(%)

Precision recall F1-

Score

Classification

Time (s)

ANN 48.03 0.4800 1.000 0.6500 25.61

C4.5 66.33 0.7500 0.6900 0.7200 26.08

KNN 75.51 0.7700 0.8200 0.8000 26.12

NB 69.38 0.6800 0.9100 0.9500 26.21

SVM 61.22 0.6400 0.8500 0.7300 26.50

From Table 5.5, KNN has the leading accuracy of

75.51%. KNN has the peak precision of 0.7700,

ANN obtained the topmost Recall of 1.000, and the

maximum F1-score value of 0.9500 was obtained in

NB and the classification time of 26.08s was

recorded in C4.5 all obtained Equinox Framework

Dataset.

Table 5.6: Performance Metrics for Equinox

Dataset (with HSA)
Classifier Evaluation Metrics

Accuracy

(%)

Precision recall F1-Score Classification

Time (s)

ANN 84.52 0.8500 0.9900 0.9100 27.74

C4.5 79.36 0.8800 0.8800 0.8800 28.27

KNN 85.51 0.8700 0.9800 0.9200 28.43

NB 83.33 0.9000 0.9100 0.9000 28.72

SVM 86.31 0.8600 1.000 0.9800 28.90

From Table 5.6, KNN has the leading accuracy of

75.51%, KNN has the uppermost precision of

0.7700, ANN has the best Recall value of 0.9900,

NB has the best F1-score value of 0.8000 and ANN

has the classification time of 26.01s all obtained

Equinox Framework Dataset

Table 5.7: Performance Metrics for Eclipse PDE UI

Dataset (without HSA)
Classifier Evaluation Metrics

Accuracy

(%)

Precision recall F1-Score Classification

Time (s)

ANN 89.16 0.8900 1.000 0.9400 24.14

C4.5 78.09 0.8600 0.8800 0.8700 24.44

KNN 84.85 0.8600 0.9800 0.9200 24.56

NB 81.35 0.8600 0.9300 0.8900 24.68

SVM 83.22 0.8500 1.000 0.9200 24.70

From Table 5.7, ANN has the best accuracy of

89.16%. ANN has the best precision of 0.8900.

Also, ANN has the best Recall of 1.000. ANN and

SVM both have the best F1-score value of

0.9400was. The lowest classification time of 24.14s

was recorded in ANN all obtained Eclipse Dataset.

Table 5.8: Performance Metrics for Eclipse PDE UI

Dataset (with HSA)
Classifier Evaluation Metrics

Accuracy

(%)

Precision recall F1-Score Classification

Time (s)

ANN 85.97 0.8600 1.000 0.9200 24.09

C4.5 77.78 0.8800 0.8700 0.9000 25.04

KNN 83.11 0.8400 0.9900 0.9100 25.18

NB 81.56 0.8800 0.9100 0.8900 25.48

SVM 86.44 0.8600 1.000 0.9300 25.52

From Table 5.8, SVM has the highest accuracy

value of 86.44%, ANN has the topmost precision

value of 0.8900, ANN has the best Recall value of

1.000 while SVM also has the best F1-score value

of 0.9400was in ANN, and finally, the lowest

classification time of 24.14s was recorded in ANN

all obtained Eclipse Dataset.

6. COMPARATIVE ANALYSIS

RESULTS OF DEFECT PREDICTION

Comparative analysis of defect prediction was

conducted for the different datasets with respect to

different datasets used. The results were provided

using the following Figures.

Figure 6.1: Comparative Analysis for Accuracy (%) (Without HSA)

From Figure 6.1, the highest accuracy of 99.26%

was obtained in KNN for Lucene dataset, while the

lowest accuracy of 48.03% was recorded in ANN for

FOLORUNSHO Bamisaye, V.B. Oyekunle, O.J. Olabode

PERFORMANCE EVALUATION OF SOME SELECTED LEARNING ALGORITHMS FOR SOFTWARE DEFECT

PREDICTION USING HARMONY SEARCH ALGORITHM 15

Equinox framework dataset all obtained when the

HSA was not applied for FS

Figure 6.2: Comparative Analysis for Accuracy (%) (With

HSA)

From Figure 6.2, the highest accuracy of 93.27% was

obtained in KNN for Lucene dataset, while the lowest

accuracy of 61.22% was recorded in SVM for Equinox

framework dataset all obtained when the HSA was applied

for FS

Figure 6.3: Comparative Analysis for Precision (without HSA)

From Figure 6.2, KNN has the top precision value

of 0.9900 in KNN for Lucene dataset, while the

lowest accuracy of 0.4800 was recorded in ANN for

Equinox framework dataset all obtained when the

HSA was not applied for feature selection

Figure 6.4: Comparative Analysis for Precision (with

HSA)

From Figure 6.4, KNN has the peak precision value of

0.9900 in KNN for Lucene dataset, while the lowest

accuracy of 0.6300 was recorded in ANN for Equinox

framework dataset all obtained when the HSA was applied

for FS

Figure 6.5: Comparative Analysis for Recall (without HSA)

From Figure 6.5, the highest recall value of 1.000 was

obtained in ANN for Eclipse, Lucene dataset, also 1.000

was recorded in KNN for Lucene, 1.000 was recorded in

SVM, for Mylyn, Eclipse Dataset, Lucene and Equinox

Framework, the lowest recall value of 0.6900 was

obtained in C4.5 for Equinox Framework when no FS was

applied

Figure 6.6: Comparative Analysis for Recall (with HSA)

From Figure 6.6, the highest recall value of 1.000 was

obtained in ANN for Mylyn, Lucene, 1.000 was obtained

in KNN for Lucene, 1.000 was obtained in SVM for

Mylyn, Eclipse, and Lucene, and the lowest recall value

of 0.6900 was recorded in C4.5 for Equinox Framework

when HSA was applied to pick feature.

Figure 6.7: Comparative Analysis for F1-Score (without HSA)

From Figure 6.7, F1-score has the best value of

0.9800 in SVM for Mylyn, and Recall has the lowest

value of 0.6500 in ANN for Equinox Framework

when HAS was not was applied.

Figure 6.8: Comparative Analysis for F1-Score (with HSA)

From Figure 6.8, the best F1-score value of 0.9700

was recorded in KNN for Lucene and the lowest

recall value of 0.7200 was recorded in C4.5 for

Equinox Framework when the HSA was applied.

Figure 6.9: Comparative Analysis for Classification Time

(s) (without HSA)

From Figure 6.9, the lowest classification time of

24.14s was obtained in ANN for Eclipse Dataset

while the highest classification time of 28.90 was

recorded in SVM for Mylyn when HSA was not

applied.

16 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE, Vol.22, Issue 2, 2022

Figure 6.10: Comparative Analysis for Classification

Time (s) (with HSA)

From Figure 6.10, the lowest classification time of

24.09s was obtained in ANN for Eclipse Dataset

while the highest classification time of 29.80 was

recorded in SVM for Mylyn when HSA was applied.

7. CONCLUSION SUMMARY OF

FINDINGS

Feature selection has been considered by researchers

to be one of the predominant stages in the SDP

system. It involves the techniques of obtaining the

discriminant feature of the original dataset in which

an initial set of raw datasets is reduced to a more

manageable form for classification purposes.

Representation of feature produces an

approximation to the original feature in fewer

dimensions, while still maintaining the same

structure of original features. This study designed a

software defect classifying system using some

selected MLAs. An optimization algorithm known

as HSA was introduced for

The experimental result showed the maximum

accuracy of 99.26% was obtained in KNN in the

Lucene dataset when the HSA was not used, the

highest precision of 0.9900 which was also the best

precision was obtained in KNN recorded in Lucence

when the HSA was not applied. The highest recall

of 1.0000 which is also the best recall was obtained

in ANN and KNN in Lucene, also 1.000 was

obtained in SVM for Mylyn, Dataset 2 PDE UI,

Lucence, and Equinox framework dataset when

harmony search was not applied. When the HSA

was not applied, the Recall has the best record value

of 1.000 in ANN for Mylyn while in Lucence, 1.000

was recorded in KNN for Lucence, and 1.000 was

obtained in SVM for Dataset2PDE UI and Lucence.

dataset and the highest F1-score of 0.9800 which is

also the best F1-score were obtained in SVM for

Mylyn and the lowest classification time of 24.14s

was recorded in ANN for Eclipse. The study

concluded that the application of the HSA resulted

in a slight improvement in some aspects of the SDP

system.

7.1 Recommendation

There are tendencies for prolonged processing of the

dataset and misclassification using the whole dataset

discriminant feature. defect prediction. Hence,

applying a FS technique reduces the risk of

prolonged data processing and misclassification.

The defect classification model enhances the

achievement of quality and reliable software as well

as improves customer satisfaction. For an efficient

defect prediction, it is strongly recommended to

apply FS to pick the subset of the discriminant

feature.

7.2 Contribution to Knowledge

The impact or contribution of this study includes:

1. To begin, this study identified HSA to be an

effective Feature Selection.

2. After that, this study also presented an active

model for SDP using an optimization
algorithm (HSA), classifiers (SVM, ANN,

KNN, C4.5, & NB), and metrics (precision,

recall, classification time, F1-score, and

accuracy)

3. Artificial Neural Network has the lowest

classification time of 24.04s

4. HSA was found to be very efficient in

dimensionality reduction through feature

selection which reduced prolonged data

processing, classification time, and

misclassification.

5. Finally, the results of our experiments show

that selecting relevant features for

classification reduces prediction time

7.3 Suggestions for further studies

The following recommendations are listed to draw

the attention of future studies in SDP systems:

1. Developing a single model that can be used

to select features and predict defects of

text, images, and others

2. In the future, to further enrich and broaden

the scope of the research, we may include

more optimization algorithms, MLAs, and

diversified software defect datasets in the

testing and experimentation process.

3. Furthermore, we may compare the

performance of the new ensemble

techniques results with this study.

8. REFERENCES

[1] Anonymous "SOFTWARE DEFECT

DEFINITION", web accessed 20.11.2022:

https://www.lawinsider.com/dictionary/softwar

e-defect/

[2] Lakshay Sharma, "ERROR, DEFECT, AND

FAILURE" web accessed 05.02.2022:

https://www.lawinsider.com/dictionary/software-defect/
https://www.lawinsider.com/dictionary/software-defect/

FOLORUNSHO Bamisaye, V.B. Oyekunle, O.J. Olabode

PERFORMANCE EVALUATION OF SOME SELECTED LEARNING ALGORITHMS FOR SOFTWARE DEFECT

PREDICTION USING HARMONY SEARCH ALGORITHM 17

https://www.toolsqa.com/software-

testing/istqb/error-defect-failure/

[3] Nadya Bakhur. "WHAT CAUSES SOFTWARE

BUGS? Types of Defects in Software Testing"

web accessed 09.01.2022:

https://neklo.com/what-causes-software-bugs/

[4] Hussain, N., & Bixin, L. “PERFORMANCE

COMPARISON OF ML CLASSIFIERS IN

SOFTWARE DEFECTS PREDICTION

ABSTRACT:” IOSR Journal of Computer

Engineering (IOSR-JCE),

https://doi.org/10.9790/0661-2205034858

(2020).

[5] Anonymous. "SOFTWARE-DEVELOPMENT"

web accessed 15.12.2021:

https://economictimes.indiatimes.com/definitio

n/debugging/

[6] Anonymous. "DIFFERENCE BETWEEN

DEFECT, ERROR, BUG, FAILURE AND

FAULT!" web accessed 25.10.2021:

https://www.360logica.com/blog/difference-

between-defect-error-bug-failure-and-fault/

[7] Telgaonkar, A. H & Deshmukh, S.

“Dimensionality Reduction and Classification

through PCA and LDA.” International Journal of

Computer Applications, 122(17), 4–8. 2015.

[8] Wikipedia, the free encyclopedia,

"DIMENSIONALITY REDUCTION" web

accessed 28.12.2021:

https://en.wikipedia.org/wiki/Dimensionality_re

duction/

[9] Olatunji B. L.1 , Olabiyisi S. O.2 , Oyeleye C.

A.3 , Sanusi B. A.4 , Olowoye A. O.5 , Ofem O.

A.6 “Development of software defect prediction

system using artificial neural network”, web

accessed 15.2021.2022:

https://pdfs.semanticscholar.org/6047/c62f7d16

9b133e6389d6840eaca0201e140c.pdf/

[10] Hussain, N., & Bixin, L.

“PERFORMANCE COMPARISON OF ML

CLASSIFIERS IN SOFTWARE DEFECTS

PREDICTION ABSTRACT:” IOSR Journal of

Computer Engineering (IOSR-JCE),

https://doi.org/10.9790/0661-2205034858

(2020).

[11] Gray, D., Bowes, D., Davey, N. and Sun, Y.,

“Bruce Christianson, Using the Support Vector

Machine as a Classification Method for Software

Defect Prediction with Static Code Metrics,”

11th International Conference, EANN 2019, pp.

21-25, 2019.

[12] Sanusi, B. A., Olabiyisi, S. O., Olowoye, A.

O., & Olatunji, B. L. “SDF SYSTEM USING

ML-BASED ALGORITHMs.” Journal of

Advances

[13] Fenton, N. and Neil, M., “Using Bayesian

networks to predict software defects and

reliability,” Proc. IMechE vol. 222 Part O: J.

Risk and Reliability, pp. 702-703, 2008.

[14] Rao, S. V. A. et al. "AN ARTIFICIAL

NEURAL NETWORK GENETIC

ALGORITHM WITH SHUFFLED FROG

LEAP ALGORITHM FOR SOFTWARE

DEFECT PREDICTION.", 831–836. 2020

[15] M. Ashraf, G. Chetty, and D. Tran, “Feature

selection techniques on thyroid, hepatitis, and

breast cancer datasets,” International Journal on

Data Mining and Intelligent Information

Technology Applications (IJMIA), vol. 3, no. 1,

pp. 1-8, 2013.

[16] M. Leach, “Parallelising feature selection

algorithms,” University of Manchester,

Manchester, 2012.

[17]. Wikipedia, the free encyclopedia "Artificial

neural network", web accessed 20.12.2021:

https://en.wikipedia.org/wiki/Artificial_neural_

network

[18] Ernest Yeboah Boateng1, Joseph Otoo2, Daniel

A. Abaye1* "Basic Tenets of Classification

Algorithms K-Nearest-Neighbor, Support

Vector Machine, Random Forest and Neural

Network: A Review". web accessed 28.10.2021:

https://www.scirp.org/journal/paperinformation.

aspx?paperid=104256/.

[19] Anonymous., "Naïve Bayes Classifier

Algorithm" web accessed 08.01.2022:

https://www.javatpoint.com/machine learning-

naive-bayes-classifier/

 [20] Khan, R. U., Albahli, S., Albattah, W., Nazrul,

M., & Khan, I., “Software Defect Prediction Via

Deep Learning.” International Journal of

Innovative Technology and Exploring

Engineering (IJITEE), 9(5), 343–349, 2020.

https://doi.org/10.35940/ijitee.D1858.039520

 [21] Anonymous., "K-Nearest Neighbor (KNN)

Algorithm for Machine Learning", web accessed

08.01.2022: https://www.javatpoint.com/k-

nearest-neighbor-algorithm-for-machine-

learning/

[22] Wikipedia, the free encyclopedia, "C4.5

algorithm" web accessed 28.12.2021:

https://en.wikipedia.org/wiki/

[23] Salma Ghoneim "Accuracy, Recall, Precision,

F-Score & Specificity, which to optimize on?",

web accessed 26.04.2022:

https://towardsdatascience.com/accuracy-recall-

precision-f-score-specificity-which-to-optimize-

on-867d3f11124/

[24] Patra, B., & Dash, S. (2016). A FRGSNN

Hybrid FS Combining FRGS filter and GSNN

wrapper. International Journal of Latest Trends

in Engineering and Technology, 7(2), 8–15.

[25] Youm, K. C., Ahn, J., & Lee, E. IMPROVED

BUG LOCALIZATION BASED ON CODE

CHANGE HISTORIES AND BUG REPORTS.

Information and Software Technology, 82, 177–

192. 2017.

https://doi.org/10.1016/j.infsof.2016.11.002

https://www.toolsqa.com/software-testing/istqb/error-defect-failure/
https://www.toolsqa.com/software-testing/istqb/error-defect-failure/
https://neklo.com/what-causes-software-bugs/
https://doi.org/10.9790/0661-2205034858
https://economictimes.indiatimes.com/definition/debugging/
https://economictimes.indiatimes.com/definition/debugging/
https://www.360logica.com/blog/difference-between-defect-error-bug-failure-and-fault/
https://www.360logica.com/blog/difference-between-defect-error-bug-failure-and-fault/
https://en.wikipedia.org/wiki/Dimensionality_reduction/
https://en.wikipedia.org/wiki/Dimensionality_reduction/
https://pdfs.semanticscholar.org/6047/c62f7d169b133e6389d6840eaca0201e140c.pdf/
https://pdfs.semanticscholar.org/6047/c62f7d169b133e6389d6840eaca0201e140c.pdf/
https://doi.org/10.9790/0661-2205034858
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://www.scirp.org/journal/paperinformation.aspx?paperid=104256/
https://www.scirp.org/journal/paperinformation.aspx?paperid=104256/
https://www.javatpoint.com/machine%20learning-naive-bayes-classifier/
https://www.javatpoint.com/machine%20learning-naive-bayes-classifier/
https://doi.org/10.35940/ijitee.D1858.039520
https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning/
https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning/
https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning/
https://en.wikipedia.org/wiki/
https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124/
https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124/
https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124/
https://doi.org/10.1016/j.infsof.2016.11.002

18 UNIVERSITY OF PITESTI SCIENTIFIC BULLETIN: ELECTRONICS AND COMPUTERS SCIENCE, Vol.22, Issue 2, 2022

[26] Mahmoud A. E. Marwa S. F. & Mono G. G.

“Spotted hyena, a novel meta-heuristic

optimization algorithm were used for defect

prediction,” web accessed 09.10.2021:

https://www.researchgate.net/publication/35380

8322_Meta-

heuristic_optimization_algorithm_for_predictin

g_software_defects/

[27] Ren, J., Qin, K., Ma, Y., & Luo, G. (2014). On

Software Defect Prediction Using Machine

Learning. Journal of Applied Mathematics, 1–9.

https://www.researchgate.net/publication/353808322_Meta-heuristic_optimization_algorithm_for_predicting_software_defects/
https://www.researchgate.net/publication/353808322_Meta-heuristic_optimization_algorithm_for_predicting_software_defects/
https://www.researchgate.net/publication/353808322_Meta-heuristic_optimization_algorithm_for_predicting_software_defects/
https://www.researchgate.net/publication/353808322_Meta-heuristic_optimization_algorithm_for_predicting_software_defects/

