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Abstract: The increasing demand for enormous data rate is propelling interest in 5G millimeter wave 

communication. Several methods have been proposed for millimeter wave channel estimation but there is little or 

dearth of information on the impact of training overhead on the performance of these methods. This work 

investigated the effect of training overhead on the performance of orthogonal matching pursuit (OMP), 

compressed sampling matching pursuit (CoSAMP), deep learning (DL) and least square (LS) techniques by 

employing normalized mean square error (NMSE), spectral efficiency (SE) and bit rate as performance indices. It 

was observed from NMSE profile that smallest errors were recorded for DL and OMP when the training overhead 

was 60 while for COSAMP and LS, lowest errors were recorded when the training overheads were 55 and 65, 

respectively for 4-bit ADC. It was seen also that, SE and bit rate exhibited dissimilar characteristics over 

increasing values of training overheads. 
 

1. INTRODUCTION 
 

Increasing mobile subscriber density 

occasioned by improved access to the internet, has 

necessitated the need for expanding 

communication bandwidth. As a result, millimeter 

wave frequency band is being considered as a new 

paradigm for communication not only for 

improving user experience on the internet but also 

for coping with the rapid growth of mobile 

subscriber density, avoiding network congestion, 

and for meeting increasing mobile data rate 

demand. Fifth Generation (5G) network access 

has been deployed using millimeter wave band for 

improving latency, increasing throughput and 

enhancing spectral access. Other importance of 

millimeter wave network access is well 

documented in the literature [1-7]. Several works 

have designed millimeter wave architecture for 

accomplishing enormous gains of the millimeter 

wave band where the importance is stressed of a 

good deal of knowledge of the propagation 

environment. Consequently, literature has been 

agog with different methods for carrying out the 

task of estimating millimeter wave channel. 

  The techniques proposed include 

adaptive compressed sensing [8], orthogonal 

matching pursuit [9-12], least square technique 

[11], estimation of signal parameters via 

rotational invariance [13], deep learning 

technique [14-15], low tensor technique [16], 

multiple signal classification [17], subspace 

technique [18] and compressed sampling 

matching pursuit [19]. Authors in [20] propose 

expectation maximization and generalized 

approximate passing. As remarkable as findings 

in the existing works are, there is little or dearth 

of information on the impact of training overhead 

on the performance of millimeter wave channel 

estimation methods. This work investigates the 

effect of training overhead on the performance of 

least square technique (LS), orthogonal matching 

pursuit (OMP), compressed sampling matching 

pursuit (CoSAMP) and deep learning (DL) 
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techniques which are used here as candidates for 

investigation. The paper is structured as follows: 

section one is the introduction, section 2 presents 

problem formulation and approaches adopted for 

solving the problem, section 3 is the results and 

discussion and section 4 gives concluding 

remarks. 

 

2. MATERIALS AND METHODS 

2.1 Modelling of millimeter wave cellular 

system 

 

Figure 1 depicts millimeter wave cellular 

system consisting of a transmitting station (TS) 

for combining multiple 𝑁𝑠 streams which are 

transmitted via 𝑁𝑇𝑆  antenna to the Receiving 

station (RS) where the transmitted packets are 

received by 𝑁𝑅𝑆  antennas. The received streams 

are down- converted to the carrier frequency, 

quantized by analog to digital converter (ADC) 

and digitally combined at RS using digital 

combiner. The received signal at RS is expressible 

in a form given by [21] as: 

𝑦 = 𝑀𝐵𝐵
𝐻 ℚ(𝑀𝑅𝑓

𝐻 𝐻𝑁𝑅𝐹𝑁𝐵𝐵𝑢 + 𝑀𝑅𝑓
𝐻 𝑔)   (1) 

wherein 𝑦 ∈ 𝑁𝑠 × 1is the received spatial stream, 

𝑁 ∈ 𝑁𝐵𝐵𝑁𝑅𝐹  is the precoder at TS, for which 

𝑁𝑅𝐹 ∈ ℂ𝑁𝑇𝑆×𝑃𝑇𝑆
𝑅𝐹  is the analog precoder matrix 

and 𝑁𝐵𝐵 ∈ ℂ𝑃𝑇𝑆
𝑅𝐹×𝑁𝑠is the digital precoder matrix, 

𝑀 ∈ 𝑀𝑅𝐹𝑀𝐵𝐵  is the combiner at RS, for which 

𝑀𝑅𝐹 ∈ ℂ𝑁𝑅𝑆×𝑃𝑅𝑆
𝑅𝐹  is the analog combiner matrix, 

𝑀𝐵𝐵 ∈ ℂ𝑃𝑅𝑆
𝑅𝐹×𝑁𝑠 is the digital combiner matrix 

while (. )𝐻is the symbol for conjugate transpose.
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Fig. 1 Millimeter wave cellular system model [21] 

ℚ(. )  denotes quantization operator, 𝑢  is the 

transmitted spatial symbol, 𝑔symbolizes the noise 

vector while 𝐻 represents millimeter wave 

propagation channel which is modelled using 

equation (2) as given by [10], [19], and [20] as: 

𝐻 = √
𝑁𝑇𝑆𝑁𝑅𝑆

𝐿
∑ 𝜎𝑡𝑝𝑅𝑠(𝜃𝑡)𝑝𝑇𝑆

𝐻 (𝜑𝑡)𝐿
𝑡=1

    (2) 

in which, the number of paths between TS and RS 

is represented by𝐿, 𝜎𝑡is the complex channel gain, 

independent and identically distributed, 𝑝𝑅𝑠(𝜃𝑡) 

symbolizes array steering vector with 𝜃𝑡  

representing azimuth angle of arrival at RS and 

𝑝𝑇𝑠(𝜑𝑡)is the array steering vector for which 𝜑𝑡 

is the azimuth angle of departure from TS. It is 

assumed that the millimeter wave cellular system 

utilizes uniform linear array for radiation at TS 

and the same is also used for reception at RS and 

in that connection, array steering vectors at TS 

and RS are written as: 

𝑝𝑇𝑆(𝜑𝑡) = √
1

𝑁𝑇𝑆
[
1, 𝑒𝑗

2𝜋

𝜆
𝑧 𝑠𝑖𝑛(𝜑𝑡)

, 𝑒𝑗
4𝜋

𝜆
𝑧 𝑠𝑖𝑛(𝜑𝑡)

, … ,

𝑒𝑗(𝑁𝑇𝑆−1)
2𝜋

𝜆
𝑧 𝑠𝑖𝑛(𝜑𝑡)

]

𝑇  

         (3) 

𝑝𝑅𝑆(𝜃𝑡) = √
1

𝑁𝑅𝑆
[
1, 𝑒𝑗

2𝜋

𝜆
𝑧 𝑠𝑖𝑛(𝜃𝑡)

, 𝑒𝑗
4𝜋

𝜆
𝑧 𝑠𝑖𝑛(𝜃𝑡)

, … ,

𝑒𝑗(𝑁𝑅𝑆−1)
2𝜋

𝜆
𝑧 𝑠𝑖𝑛(𝜃𝑡)

]

𝑇  

                 (4) 
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where 𝑧 =
𝜆

2
is the spacing between the array 

elements and 𝜆 is the operating wavelength. 

According to Hassan et al. [22], equation (2) may 

be represented by virtual form as: 

𝐻 = 𝑃𝑅𝑆(𝛼)𝑃𝑇𝑆
𝐻      (5) 

in which 𝛼 is a matrix containing the path gain 𝜎𝑡 

𝑃𝑇𝑆  and 𝑃𝑅𝑆 , are array response matrices which 

admit expressions of the forms of equations (6) 

and (7) as: 

𝑃𝑇𝑆 = [𝑝𝑇𝑆(𝜑1), 𝑝𝑇𝑆(𝜑2), … , 𝑝𝑇𝑆(𝜑𝐿)] ∈

ℂ𝑁𝑇𝑆×𝐿                                      (6) 

𝑃𝑅𝑆 = [𝑝𝑅𝑆(𝜃1), 𝑝𝑅𝑆(𝜃2), … , 𝑝𝑅𝑆(𝜃𝐿)] ∈ ℂ𝑁𝑅𝑆×𝐿 

            (7)   

Based on the millimeter channel model of 

equation (5), estimated millimeter wave channel 

admits expression of the form: 

𝐻̄𝑒 = 𝑃̄𝑅𝑆(𝜇)𝑃̄𝑇𝑆
𝐻                      (8) 

where 𝐻̄𝑒 is the estimated millimeter wave 

channel whose entries are expected to be close to 

the entries of channel model of equation (5),  

𝑃̄𝑅𝑆 and 𝑃̄𝑇𝑆  are estimated array matrices whose 

angles of arrival and departure are divided into 

𝐹𝑇𝑆 and 𝐹𝑅𝑆grid sizes and 𝜇 is the sparse matrix 

consisting of channel gain. 

In estimating components of equation (8), 

it is assumed that TS transmits identical symbol 

using training precoder during S training instants 

and RS utilizes training combiner with the 

received signal at RS being expressed by 

𝑦 = ℚ (√𝛽(𝐴𝑠
𝐻𝐻̄𝑒𝐵𝑠 + 𝐴𝑠

𝐻𝑔𝑠))    (9) 

wherein 𝛽  denotes average received power, 𝐴𝑠 

and 𝐵𝑠 are training combiner and precoder, 

respectively and 𝑠 = 1,2,3 … , 𝑆is the amount of 

training overheads over which the channel 

estimation is carried out. By representing equation 

(9) in vector form leads to equation (10) expressed 

by: 

𝑤 = ℚ ((√𝛽(𝐵𝑠
𝑇 ⊗ 𝐴𝑠

𝐻)𝑣𝑒𝑐[𝐻̄𝑒] + 𝑑))  (10) 

𝑤  is the resulting received signal and 𝑑 =

𝑑𝑖𝑎𝑔[𝐴𝑠
𝐻𝑣𝑒𝑐(𝑔𝑠)]is the additive white Gaussian 

noise vector. In equation (10), vector identity 

𝑣𝑒𝑐(𝑋𝑌𝑍) = 𝑍𝑇 ⊗ 𝑋𝑣𝑒𝑐(𝑌) is invoked, where, 

⊗ is the symbol for Kronecker product of two 

vectors. 

 When equation (8) is substituted in equation 

(10), the following equation suffices; 

𝑤 = ℚ ((√𝛽(𝐵𝑠
𝑇 ⊗ 𝐴𝑠

𝐻)(𝑃̄𝑇𝑆
∗ ⊗ 𝑃̄𝑅𝑆)𝑣𝑒𝑐(𝜇) + 𝑑))  (11) 

It is of interest to note that 𝐵𝑠 and 𝐴𝑠are 

parameters which are constructed with entries 

deduced from random values of equation (12) and 

(13) given by [10], [19] and [21] as: 

[𝐵]𝑖,𝑘 =
1

√𝑁𝑇𝑆
𝑒

𝑗
𝑎𝑄2𝜋

2
𝑁𝑞

𝑇𝑆
  (12) 

[𝐴]𝑖,𝑘 =
1

√𝑁𝑅𝑆
𝑒

𝑗
𝑎𝑅2𝜋

2
𝑁𝑞

𝑅𝑆  (13) 

For which 𝑁𝑞
𝑇𝑆, 𝑁𝑞

𝑅𝑆  respectively, are the amount 

of quantization bits in the analog phase shifter at 

TS and RS.  

By invoking that 𝛷 = (𝐵𝑠
𝑇𝑃̄𝑇𝑆

∗ ⊗ 𝑃̄𝑅𝑆𝐴𝑠
𝐻) 

and 𝑎 = 𝑣𝑒𝑐(𝜇)  in equation (11) leads to 

underdetermined linear problem expressed by 

equation (14) as: 

𝑤 = ℚ(√𝛽𝛷𝑎 + 𝑑)   

 (14) 

where 𝛷  is the sensing matrix and 𝑎  represents 

unknown sparse channel gain. All other 

parameters remain as defined earlier. 

The quantization operator in equation 

(14) is modelled as uniform mid-rise quantizer 

with quantization step given by [21] as: 

𝛥 =
𝑞

2𝑣−1
      (15) 
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For which, 𝛥 denotes quantization step, 𝑣  

represents quantity of bits in the ADC and 𝑞  

denotes maximum absolute value of real and 

imaginary parts of measurement vector, 𝑤 . 

Equation (14) is solved for the channel gain using 

quantized versions of OMP, CoSAMP, and DL 

models available in the literature [21] which are 

described as follows. 

2.2. Channel estimation methods 

2.2.1. OMP model 

 

  The following algorithm steps are 

implemented in determining the channel gain via 

OMP 

Step 1:  largest inner product between sensing matrix 

and the residual is determined for which the residual 

is equal to measurement vector for the first instance. 

This forms the current support entries.  

Step 2: enlarged support is formed by finding the 

union between the current support and previous 

support estimate.  

Step 3: least square problem over the enlarged 

support is determined for the channel gain.  

Step 4: The residual is updated  

Step 5: The process is repeated until the norm of the 

residual is less than a given threshold 

Step 6: End the process 

 

2.2.2 CoSAMP model 

 

The algorithm steps of CoSAMP model 

are as follows: 

Step 1: correlation between the sensing matrix and 

residual is computed.  

Step 2:  The largest components of the correlation 

are identified which form the new supports 

Step 3:  new supports are combined with the sets 

from the previous estimates.  

Step 4: Channel gain emerges by solving least 

square problem over the current or enlarged 

support.  

Step 5: gain is pruned down such that its length is 

equal to the sparsity of the millimeter wave 

channel. 

Step 6:  residual is updated 

Step 7: repeat the process until the norm of the 

residual is less than the defined threshold 

Step 8: End the process 

2.2.3. Deep learning model 

A dense multilayer perceptron feed 

forward neural network (a variant of deep 

learning) is modelled for determining the channel 

gain where the network consists of input layer, 

three hidden layers and output layer [21]. Given 

an input vector,𝑥𝑛 of n-th elements, the output of 

the deep learning neural network, yo, is expressed 

by: 

𝑦𝑜 = 𝜑𝑜 (∑ 𝑤1𝑗 (𝜑ℎ(∑ 𝑤𝑖𝑛𝑥𝑛
𝑁
𝑛=1 ))𝑀

𝑗=1 )  (16) 

in which 𝜑𝑜, 𝜑ℎ, respectively represent activation 

functions at the output and hidden layers, 𝑤1𝑗is 

the connection weight between neuron 𝑗  in the 

hidden layer and output layer,  𝑤𝑖𝑛 is the synaptic 

weight between neurons at the hidden layer and 

input layer.  𝑥𝑛  is obtained from correlation of 

sensing matrix and measurement vector. The 

weights of the network are trained by using back 

propagation algorithm, where the error expressed 

by (17) is propagated to the hidden layers for 

proper training of the weights. 

𝑘 = 𝑓 − 𝑦𝑜     (17) 

where 𝑘denotes the propagation error and 𝑓is the 

expected output (gain of the simulated millimeter 

wave channel environment). 

2.2.4. Least Square (LS) model 

The least square channel estimate is 

determined from equation (10) by minimizing 

error function given by; 

𝑓(𝐻̄𝐿𝑆) = √𝛽(‖𝑤 − 𝐺𝐻̄𝐿𝑆‖2
2)   (18) 

where, 𝑓(𝐻̄𝐿𝑆) is the error function to be 

minimized, 𝐻̄𝐿𝑆 is the least square channel 

estimate and 𝐺 = 𝐵𝑠
𝑇 ⊗ 𝐴𝑠

𝐻 . Equation (18) is 

expanded further as: 

𝑓(𝐻̄𝐿𝑆) = √𝛽((𝑤 − 𝐺𝐻̄𝐿𝑆)𝐻(𝑤 − 𝐺𝐻̄𝐿𝑆))   (19) 
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By invoking symmetry and equating the 

derivative of equation (19) to zero, 𝐻̄𝐿𝑆 is 

expressible as:  

𝐻̄𝐿𝑆 =
1

√𝛽
(𝐺𝐻𝐺)−1𝐺𝐻𝑤   (20) 

2.3. Performance metrics 

The performance of channel estimation 

models is evaluated by using normalized mean 

square error (NMSE), spectral efficiency and bit 

rate as metrics and are defined as: 

𝑁𝑀𝑆𝐸(𝑑𝐵) = 10 𝑙𝑜𝑔10 [
‖𝐻 − 𝐻̄𝑒‖𝐹

2

‖𝐻‖𝐹
2 ]

 

      (21) 

where ‖ ‖𝐹  is the symbol that represents the 

Frobenius norm between two matrices 

Spectral efficiency 

= 𝑙𝑜𝑔2 |𝐼𝑁𝑠
+

𝑆𝑁𝑅

𝑁𝑠
(𝑀𝐻𝑀)−1𝑀𝐻𝐻𝑁𝑁𝐻𝐻𝐻𝑀|       (22) 

where 𝑁is the left-hand singular matrix from the 

singular value decomposition of channel 

estimate 𝐻̄𝑒 or 𝐻̄𝐿𝑆  while 𝑀  is a combiner 

designed using the approach presented in [24]. 

Bit rate = spectral efficiency × bandwidth  (23) 

 

3. RESULTS AND DISCUSSION 

Here, simulation results that illustrate the 

impact of training overheads on the performance 

of millimeter wave channel estimation models are 

presented.  

The results are generated using 

simulation code written in R2018a Matlab 

environment and whose implementation is done 

on Intel(R) Core (TM) i3-5005U@ 2.00GHz. 

A single user millimeter wave cellular 

system consisting of NTS= 64 antennas at TS and 

NRS= 32 antennas at RS is assumed with 7 channel 

paths between TS and RS. The amount of RF 

chains at both TS and RS is 5, bandwidth is 

500MHz while operating frequency is 32GHz 

[19]. The entries of the millimeter wave channel 

model H in equation (2) are constructed by 

assuming that its angles of departure and angle of 

arrival are distributed over (0,2𝜋) and gain 

assumed to be independent and identically 

distributed [19] and [21].  

For the purpose of determining 

corresponding channel estimates, 𝑃̄𝑇𝑆   and 𝑃̄𝑅𝑆 

matrices in equation (8) consist of entries whose 

angles of departure and angle of arrival are 

uniformly distributed on discretized grids 𝐹𝑇𝑆 =

𝑁𝑇𝑆  and 𝐹𝑅𝑆 = 𝑁𝑅𝑆. Complex Gaussian random 

values are used to model AWGN, taken from 

ℂℕ(0, 𝜏2)where 𝜏indicates the noise power. The 

power received, symbolized, by 𝛽 = 𝜏2 × 𝑆𝑁𝑅 

with SNR denotes signal to noise ratio in decibel. 

CoSAMP and OMP algorithms are stopped when 

the norm of the residual falls below 10−10 [19]. 

The DL neural network model consists of 512, 

256 and 128 dense neurons, respectively in each 

of the three hidden layers and the network allows 

for 20% dropout of hidden neurons. The quantity 

of epochs for training the weight is 1200 and 

learning rate is 0.01 [21].   

Figure 2 presents the response behavior of 

NMSE to change of SNR from -20dB to 20dB 

where S varies from 50 to 70 and the quantity of 

bits in the ADC (𝑣) is 4. 
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(a)  (b) 

 

    (c)        (d) 

Fig. 2.  NMSE characteristics of OMP, CoSAMP, LS and DL, 𝑣 = 4 and S is (a) 50, (b) 55, (c) 60 and (d) 70 

It is observed in Fig. 2 that LS displays 

the worst performance as SNR increases from -

20dB to 20dB and for all the values of training 

overhead. It is observed also in Fig. 2 that OMP 

exhibits the best performance when SNR is 

beyond -10dB as shown in Figs. 2(a), -5dB as 

observed in Fig. 2(b) and 5dB as seen in Figs. 2(c) 

and 2(d).   

Figure 3 on the other hand depicts 

computational profiles where NMSE is varied 

against number of training overhead, S, and using 

SNR of 15dB and 4 bit ADC. 

 

Fig 3. NMSE against number of training overheads, 

𝑣 = 4  and SNR = 15dB 

A closer look at Fig. 3 shows that NMSEs 

of OMP and DL slightly reduce with increase in 
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training overhead from 50 to sixty 60 beyond 

which the errors marginally increase. The values 

of NMSE for OMP at training overheads of 50, 

55, 60, 65 and 70 are -7.9, -9, -9.3, -8.3 and -

7.9dB, respectively while NMSEs for DL are 0.4, 

0.03, 0.007, 0.039 and 0.021dB, respectively. It is 

noticed that both OMP and DL have the lowest 

errors when the training overhead is 60.   

Moreover, it is seen in Fig. 3 that NMSE 

of COSAMP surges when the training overhead is 

beyond 55. The values of NMSE for CoSAMP at 

training overhead of 50, 55, 60, 65, and 70 are -

1.5, -2, -1.86, -1.7, and -1.5dB, respectively. This 

indicates that CoSAMP has lowest error at 

training overhead of 55. Figure 3 also shows that 

there is an initial rise of NMSE of LS from 

training overhead of 50 to 60 after which NMSE 

reduces significantly.  The values of NMSE for 

LS at training overheads of 50, 55, 60, 65, and 70 

are 15.9, 16, 17, 10.5 and 9.5dB, respectively. It 

is found that LS has the smallest error when the 

training overhead is 65. This suggests that LS 

requires more training overhead and greater 

higher computational resources than others. 

In addition, Figs. 4 and 5 illustrate spectral 

efficiency and bit rate against SNR where 𝑣 = 4 

and S is varied from 50 to 70. 

 

(a)         (b) 

 

(c)      (d) 

Fig.4 Spectral efficiency characteristics of OMP, CoSAMP, LS and DL, 𝑣 = 4  and 𝑆 is (a) 50, (b) 55, (c) 60 and 

(d) 70 
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Figure 4 reveals that the spectral efficiencies of all 

the channel estimation models increase linearly 

across SNR for all the values of training overhead 

utilized as candidates for investigation.  

Computational profiles for bit rate in Fig. 5 also 

exhibit similar characteristics to that of spectral 

efficiency. Furthermore, it is observed in Figs. 4 

(a) and 5 (a) that OMP has the best spectral 

efficiency and bit rate when S is 50 and across all 

the values of SNR while in Figs. 4(b) and 5(b), DL 

has the greatest spectral efficiency and bit rate 

when S is 55. 

 

 

(a)    (b) 

 

(c)  (d) 

Fig. 5 Bit rate characteristics of OMP, CoSAMP, LS and DL, 𝑣 = 4  and 𝑆 is (a) 50, (b) 55, (c) 60 and (d) 70 

It is however seen in Figs. 4(c) and 5(c) that 

OMP exhibits the best performance when S is 60 

and when SNR is between -20dB and 4dB, 

beyond which LS outperforms OMP and has the 

best spectral efficiency and bit rate over the range 

of 4dB to 20dB.  

In addition, when training overhead is 

increased to 70 and as shown in Figs. 4 (d) and 5 

(d), CoSAMP has the best spectral efficiency and 

bit rate. 

4. CONCLUSION 
This work investigated the effect of training 

overhead on the performance of four-millimeter 

wave channel estimation models which included 

orthogonal matching pursuit, least square, 

compressed sampling matching pursuit and deep 

learning. Normalized mean square error (NMSE), 

spectral efficiency and bit rate were utilized as 

candidates for evaluating the performance of 

those channel estimation models.  It was seen for 
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all the values of training overheads that NMSE of 

LS displayed the worst performance over SNR 

values considered. In addition, it was observed 

from NMSE profiles using 4-bit Analog to Digital 

Converter (ADC) that OMP and DL recorded the 

lowest errors when the training overhead was 60 

while lowest error was observed for CoSAMP 

when the training overhead was 55.  Furthermore, 

it was found that LS required 65 as training 

overhead which implied that more training 

overheads were needed for reduced error 

performance in LS. This suggested that LS would 

require more computational resources than other 

models.   

In addition, it was found that spectral 

efficiency and bit rate of all the estimation models 

increased linearly with increasing values of SNR 

and training overhead. It was seen that spectral 

efficiency and bit rate of these models exhibit 

varying characteristics under different values of 

training overhead with OMP producing the best 

spectral efficiency and bit rate when the training 

overhead was 50 while DL has the highest spectral 

efficiency and bit rate when training overhead was 

increased to 55. Compressed sampling matching 

pursuit produced the best performance on 

increasing the training overhead to 70. This study 

indicated that the training overhead played pivotal 

role in the behavior of normalized mean square 

error, spectral efficiency and bit rate of these 

models.  

The impact of training overhead on the 

performance of other millimeter wave channel 

estimation methods existing in the literature will 

be considered in future. 
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